Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 19(1)2022 02 14.
Article in English | MEDLINE | ID: mdl-35100571

ABSTRACT

Objective.Somatosensory perception is disrupted in patients with a lower limb amputation. This increases the difficulty to maintain balance and leads to the development of neuromuscular adjustments. We investigated how these adjustments are reflected in the co-activation of lower body muscles and are modulated by visual feedback.Approach.We measured electromyography (EMG) signals of muscles from the trunk (erector spinae and obliquus external), and the lower intact/dominant leg (tibialis anterior and medial gastrocnemius) in 11 unilateral transfemoral amputees and 11 age-matched able-bodied controls during 30 s of upright standing with and without visual feedback. Muscle synergies involved in balance control were investigated using wavelet coherence analysis. We focused on seven frequencies grouped in three frequency bands, a low-frequency band (7.56 and 19.86 Hz) representing more sub-cortical and spinal inputs to the muscles, a mid-frequency band (38.26 and 62.63 Hz) representing more cortical inputs, and a high-frequency band (92.90, 129 and 170.90 Hz) associated with synchronizing motor unit action potentials. Further, the dynamics of changes in intermuscular coupling over time were quantified using the Entropic Half-Life.Main results.Amputees exhibited lower coherency values when vision was removed at 7.56 Hz for the muscle pair of the lower leg. At this frequency, the coherency values of the amputee group also differed from controls for the eyes closed condition. Controls and amputees exhibited opposite coherent behaviors with visual feedback at 7.56 Hz. For the eyes open condition at 129 Hz, the coherency values of amputees and controls differed for the muscle pair of the trunk, and at 170.90 Hz for the muscle pair of the lower leg. Amputees exhibited different dynamics of muscle co-activation at the low frequency band when vision was available.Significance.Altogether, these findings point to the development of neuromuscular adaptations reflected in the strength and dynamics of muscular co-activation.


Subject(s)
Amputees , Adaptation, Physiological , Electromyography , Feedback, Sensory/physiology , Humans , Leg , Muscle, Skeletal/physiology
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3815-3818, 2020 07.
Article in English | MEDLINE | ID: mdl-33018832

ABSTRACT

The dynamics of the adjustment of center of pressure (CoP) has been utilized to understand motor control in human pathologies characterized by impairments in postural balance. The control mechanisms that maintain balance can be investigated via the analysis of muscle recruitment using electromyography (EMG) signals. In this work, we combined these two techniques to investigate balance control during upright standing in transfemoral unilateral amputees wearing a prosthesis. The dynamics of the CoP adjustments and EMG-EMG coherence between four muscles of the trunk and lower limb of 5 unilateral transfemoral amputees and 5 age-matched able-bodied participants were quantified during 30 s of quiet standing using the entropic half-life (EnHL) method. Two visual conditions, eyes open and eyes closed, were tested. Overall, the group of amputees presented lower EnHL values (higher dynamics) in their CoP adjustments than controls, especially in their intact limb. The EnHL values of the EMG-EMG coherence time series in the amputee group were lower than the control group for almost all muscle pairs under both visual conditions. Different correlations between the EnHL values of the CoP data and the EMG-EMG coherence data were observed in the amputee and control groups. These preliminary results suggest the onset of distinct neuromuscular adaptations following a unilateral amputation.Clinical Relevance - Understanding neuromuscular adaptation mechanisms after an amputation may serve to design better rehabilitation treatments and novel prosthetic devices with sensory feedback.


Subject(s)
Amputees , Artificial Limbs , Adaptation, Physiological , Humans , Pilot Projects , Postural Balance
SELECTION OF CITATIONS
SEARCH DETAIL
...