Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 266: 116130, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38218127

ABSTRACT

Tacrine (THA), a long withdrawn drug, is still a popular scaffold used in medicinal chemistry, mainly for its good reactivity and multi-targeted effect. However, THA-associated hepatotoxicity is still an issue and must be considered in drug discovery based on the THA scaffold. Following our previously identified hit compound 7-phenoxytacrine (7-PhO-THA), we systematically explored the chemical space with 30 novel derivatives, with a focus on low hepatotoxicity, anticholinesterase action, and antagonism at the GluN1/GluN2B subtype of the NMDA receptor. Applying the down-selection process based on in vitro and in vivo pharmacokinetic data, two candidates, I-52 and II-52, selective GluN1/GluN2B inhibitors thanks to the interaction with the ifenprodil-binding site, have entered in vivo pharmacodynamic studies. Finally, compound I-52, showing only minor affinity to AChE, was identified as a lead candidate with favorable behavioral and neuroprotective effects using open-field and prepulse inhibition tests, along with scopolamine-based behavioral and NMDA-induced hippocampal lesion models. Our data show that compound I-52 exhibits low toxicity often associated with NMDA receptor ligands, and low hepatotoxicity, often related to THA-based compounds.


Subject(s)
Alzheimer Disease , Chemical and Drug Induced Liver Injury , Neuroprotective Agents , Piperidines , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate , Tacrine/chemistry , Cholinesterase Inhibitors/chemistry , Binding Sites , Cholinesterases , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy
2.
Neuropharmacology ; 222: 109297, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36341805

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs) play an essential role in excitatory neurotransmission in the mammalian brain, and their physiological importance is underscored by the large number of pathogenic mutations that have been identified in the receptor's GluN subunits and associated with a wide range of diseases and disorders. Here, we characterized the functional and pharmacological effects of the pathogenic N650K variant in the GluN1 subunit, which is associated with developmental delay and seizures. Our microscopy experiments showed that when expressed in HEK293 cells (from ATCC®), the GluN1-N650K subunit increases the surface expression of both GluN1/GluN2A and GluN1/GluN2B receptors, but not GluN1/GluN3A receptors, consistent with increased surface expression of the GluN1-N650K subunit expressed in hippocampal neurons (from embryonic day 18 of Wistar rats of both sexes). Using electrophysiology, we found that the GluN1-N650K variant increases the potency of GluN1/GluN2A receptors to both glutamate and glycine but decreases the receptor's conductance and open probability. In addition, the GluN1-N650K subunit does not form functional GluN1/GluN2B receptors but does form fully functional GluN1/GluN3A receptors. Moreover, in the presence of extracellular Mg2+, GluN1-N650K/GluN2A receptors have a similar and increased response to ketamine and memantine, respectively, while the effect of both drugs had markedly slower onset and offset compared to wild-type GluN1/GluN2A receptors. Finally, we found that expressing the GluN1-N650K subunit in hippocampal neurons reduces excitotoxicity, and memantine shows promising neuroprotective effects in neurons expressing either wild-type GluN1 or the GluN1-N650K subunit. This study provides the functional and pharmacological characterization of NMDARs containing the GluN1-N650K variant.


Subject(s)
Memantine , Receptors, N-Methyl-D-Aspartate , Humans , Rats , Female , Male , Animals , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics , Memantine/pharmacology , HEK293 Cells , Glutamic Acid , Mammals
3.
Br J Pharmacol ; 179(1): 65-83, 2022 01.
Article in English | MEDLINE | ID: mdl-34519023

ABSTRACT

BACKGROUND AND PURPOSE: Deschloroketamine (DCK), a structural analogue of ketamine, has recently emerged on the illicit drug market as a recreational drug with a modestly long duration of action. Despite it being widely used by recreational users, no systematic research on its effects has been performed to date. EXPERIMENTAL APPROACH: Pharmacokinetics, acute effects, and addictive potential in a series of behavioural tests in Wistar rats were performed following subcutaneous (s.c.) administration of DCK (5, 10, and 30 mg·kg-1 ) and its enantiomers S-DCK (10 mg·kg-1 ) and R-DCK (10 mg·kg-1 ). Additionally, activity at human N-methyl-d-aspartate (NMDA) receptors was also evaluated. KEY RESULTS: DCK rapidly crossed the blood brain barrier, with maximum brain levels achieved at 30 min and remaining high at 2 h after administration. Its antagonist activity at NMDA receptors is comparable to that of ketamine with S-DCK being more potent. DCK had stimulatory effects on locomotion, induced place preference, and robustly disrupted PPI. Locomotor stimulant effects tended to disappear more quickly than disruptive effects on PPI. S-DCK had more pronounced stimulatory properties than its R-enantiomer. However, the potency in disrupting PPI was comparable in both enantiomers. CONCLUSION AND IMPLICATIONS: DCK showed similar behavioural and addictive profiles and pharmacodynamics to ketamine, with S-DCK being in general more active. It has a slightly slower pharmacokinetic profile than ketamine, which is consistent with its reported longer duration of action. These findings have implications and significance for understanding the risks associated with illicit use of DCK.


Subject(s)
Behavior, Animal , Illicit Drugs , Ketamine , Locomotion , Animals , Behavior, Animal/drug effects , Illicit Drugs/adverse effects , Illicit Drugs/pharmacokinetics , Illicit Drugs/pharmacology , Ketamine/administration & dosage , Ketamine/adverse effects , Ketamine/analogs & derivatives , Ketamine/pharmacokinetics , Ketamine/pharmacology , Locomotion/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/metabolism
4.
Neuropharmacology ; 189: 108528, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33773999

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) play an essential role in regulating glutamatergic neurotransmission. Recently, pathogenic missense mutations were identified in genes encoding NMDAR subunits; however, their effect on NMDAR activity is often poorly understood. Here, we examined whether three previously identified pathogenic mutations (M641I, A645S, and Y647S) in the M3 domain of the GluN1 subunit affect the receptor's surface delivery, agonist sensitivity, Mg2+ block, and/or inhibition by the FDA-approved NMDAR blocker memantine. When expressed in HEK293 cells, we found reduced surface expression of GluN1-M641I/GluN2A, GluN1-Y647S/GluN2A, and GluN1-Y647S/GluN2B receptors; other mutation-bearing NMDAR combinations, including GluN1/GluN3A receptors, were expressed at normal surface levels. When expressed in rat hippocampal neurons, we consistently found reduced surface expression of the GluN1-M641I and GluN1-Y647S subunits when compared with wild-type GluN1 subunit. At the functional level, we found that GluN1-M641I/GluN2 and GluN1-A645S/GluN2 receptors expressed in HEK293 cells have wild-type EC50 values for both glutamate and glycine; in contrast, GluN1-Y647S/GluN2 receptors do not produce glutamate-induced currents. In the presence of a physiological concentration of Mg2+, we found that GluN1-M641I/GluN2 receptors have a lower memantine IC50 and slower offset kinetics, whereas GluN1-A645S/GluN2 receptors have a higher memantine IC50 and faster offset kinetics when compared to wild-type receptors. Finally, we found that memantine was the most neuroprotective in hippocampal neurons expressing GluN1-M641I subunits, followed by neurons expressing wild-type GluN1 and then GluN1-A645S subunits in an NMDA-induced excitotoxicity assay. These results indicate that specific pathogenic mutations in the M3 domain of the GluN1 subunit differentially affect the trafficking and functional properties of NMDARs.


Subject(s)
Excitatory Amino Acid Agonists/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Mutation/genetics , Nerve Tissue Proteins/genetics , Protein Subunits/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Female , HEK293 Cells , Hippocampus/drug effects , Hippocampus/physiology , Humans , Male , Mutation/drug effects , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Protein Subunits/agonists , Protein Subunits/antagonists & inhibitors , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Surface Properties/drug effects
5.
Sci Rep ; 10(1): 18576, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33122756

ABSTRACT

Although numerous pathogenic mutations have been identified in various subunits of N-methyl-D-aspartate receptors (NMDARs), ionotropic glutamate receptors that are central to glutamatergic neurotransmission, the functional effects of these mutations are often unknown. Here, we combined in silico modelling with microscopy, biochemistry, and electrophysiology in cultured HEK293 cells and hippocampal neurons to examine how the pathogenic missense mutation S688Y in the GluN1 NMDAR subunit affects receptor function and trafficking. We found that the S688Y mutation significantly increases the EC50 of both glycine and D-serine in GluN1/GluN2A and GluN1/GluN2B receptors, and significantly slows desensitisation of GluN1/GluN3A receptors. Moreover, the S688Y mutation reduces the surface expression of GluN3A-containing NMDARs in cultured hippocampal neurons, but does not affect the trafficking of GluN2-containing receptors. Finally, we found that the S688Y mutation reduces Ca2+ influx through NMDARs and reduces NMDA-induced excitotoxicity in cultured hippocampal neurons. These findings provide key insights into the molecular mechanisms that underlie the regulation of NMDAR subtypes containing pathogenic mutations.


Subject(s)
Glycine/pharmacology , Hippocampus/metabolism , Mutation , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Glycine Agents/pharmacology , HEK293 Cells , Hippocampus/cytology , Hippocampus/drug effects , Humans , Ligands , Models, Molecular , Nerve Tissue Proteins/genetics , Neurons/cytology , Neurons/drug effects , Protein Domains , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...