Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Clin Cancer Res ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837903

ABSTRACT

PURPOSE: Non-smokers account for 10-13% of all lung cancer cases in the United States. Etiology is attributed to multiple risk factors including exposure to secondhand smoking, asbestos, environmental pollution, and radon, but these exposures are not within the current eligibility criteria for early lung cancer screening by low-dose computed tomography (LDCT). EXPERIMENTAL DESIGN: Urine samples were collected from two independent cohorts comprising 846 participants (exploratory cohort) and 505 participants (validation cohort). The cancer urinary biomarkers, creatine riboside (CR) and N-acetylneuraminic acid (NANA) were analyzed and quantified using liquid chromatography-mass spectrometry to determine if non-smoker cases can be distinguished from sex and age-matched controls in comparison to tobacco smoker cases and controls, potentially leading to more precise eligibility criteria for LDCT screening. RESULTS: Urinary levels of CR and NANA were significantly higher and comparable in non-smokers and tobacco smoker cases as compared to population controls in both cohorts. Receiver Operating Characteristics (ROC) analysis for combined CR and NANA levels in non-smokers of the exploratory cohort resulted in better predictive performance with the area under the curve (AUC) of 0.94, whereas the validation cohort non-smokers had an AUC of 0.80. Kaplan-Meier survival curves showed that high levels of CR and NANA were associated with increased cancer-specific death in non-smokers as well as tobacco smoker cases in both cohorts. CONCLUSIONS: Measuring CR and NANA in urine liquid biopsies could identify non-smokers at high risk for lung cancer as candidates for LDCT screening and warrant prospective studies of these biomarkers.

2.
J Clin Invest ; 134(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557493

ABSTRACT

Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Hepatocytes/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Disease Models, Animal
3.
Nature ; 626(8000): 859-863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326609

ABSTRACT

Bacteria in the gastrointestinal tract produce amino acid bile acid amidates that can affect host-mediated metabolic processes1-6; however, the bacterial gene(s) responsible for their production remain unknown. Herein, we report that bile salt hydrolase (BSH) possesses dual functions in bile acid metabolism. Specifically, we identified a previously unknown role for BSH as an amine N-acyltransferase that conjugates amines to bile acids, thus forming bacterial bile acid amidates (BBAAs). To characterize this amine N-acyltransferase BSH activity, we used pharmacological inhibition of BSH, heterologous expression of bsh and mutants in Escherichia coli and bsh knockout and complementation in Bacteroides fragilis to demonstrate that BSH generates BBAAs. We further show in a human infant cohort that BBAA production is positively correlated with the colonization of bsh-expressing bacteria. Lastly, we report that in cell culture models, BBAAs activate host ligand-activated transcription factors including the pregnane X receptor and the aryl hydrocarbon receptor. These findings enhance our understanding of how gut bacteria, through the promiscuous actions of BSH, have a significant role in regulating the bile acid metabolic network.


Subject(s)
Acyltransferases , Amidohydrolases , Amines , Bile Acids and Salts , Biocatalysis , Gastrointestinal Microbiome , Humans , Acyltransferases/metabolism , Amidohydrolases/metabolism , Amines/chemistry , Amines/metabolism , Bacteroides fragilis/enzymology , Bacteroides fragilis/genetics , Bacteroides fragilis/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cohort Studies , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Gastrointestinal Microbiome/physiology , Ligands , Pregnane X Receptor/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Transcription Factors/metabolism , Infant , Cell Culture Techniques
4.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Article in English | MEDLINE | ID: mdl-37717940

ABSTRACT

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Subject(s)
Inflammation , Kidney , Mice , Humans , Animals , Aged , Infant , Infant, Newborn , Kidney/metabolism , Inflammation/metabolism , Estrogens/metabolism , Mitochondria/metabolism , Cytokines/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
5.
ACS Pharmacol Transl Sci ; 6(3): 422-446, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36926457

ABSTRACT

Polo-like kinase 1 (Plk1), a mitotic kinase whose activity is widely upregulated in various human cancers, is considered an attractive target for anticancer drug discovery. Aside from the kinase domain, the C-terminal noncatalytic polo-box domain (PBD), which mediates the interaction with the enzyme's binding targets or substrates, has emerged as an alternative target for developing a new class of inhibitors. Various reported small molecule PBD inhibitors exhibit poor cellular efficacy and/or selectivity. Here, we report structure-activity relationship (SAR) studies on triazoloquinazolinone-derived inhibitors, such as 43 (a 1-thioxo-2,4-dihydrothieno[2,3-e][1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-one) that effectively block Plk1, but not Plk2 and Plk3 PBDs, with improved affinity and drug-like properties. The range of prodrug moieties needed for thiol group masking of the active drugs has been expanded to increase cell permeability and mechanism-based cancer cell (L363 and HeLa) death. For example, a 5-thio-1-methyl-4-nitroimidazolyl prodrug 80, derived from 43, showed an improved cellular potency (GI50 4.1 µM). As expected, 80 effectively blocked Plk1 from localizing to centrosomes and kinetochores and consequently induced potent mitotic block and apoptotic cell death. Another prodrug 78 containing 9-fluorophenyl in place of the thiophene-containing heterocycle in 80 also induced a comparable degree of anti-Plk1 PBD effect. However, orally administered 78 was rapidly converted in the bloodstream to parent drug 15, which was shown be relatively stable toward in vivo oxidation due to its 9-fluorophenyl group in comparison to unsubstituted phenyl. Further derivatization of these inhibitors, particularly to improve the systemic prodrug stability, could lead to a new class of therapeutics against Plk1-addicted cancers.

6.
Nat Commun ; 14(1): 755, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36765047

ABSTRACT

Bile salt hydrolase (BSH) in Bacteroides is considered a potential drug target for obesity-related metabolic diseases, but its involvement in colon tumorigenesis has not been explored. BSH-expressing Bacteroides is found at high abundance in the stools of colorectal cancer (CRC) patients  with overweight and in the feces of a high-fat diet (HFD)-induced CRC mouse model. Colonization of B. fragilis 638R, a strain with low BSH activity, overexpressing a recombinant bsh gene from B. fragilis NCTC9343 strain, results in increased unconjugated bile acids in the colon and accelerated progression of CRC under HFD treatment. In the presence of high BSH activity, the resultant elevation of unconjugated deoxycholic acid and lithocholic acid activates the G-protein-coupled bile acid receptor, resulting in increased ß-catenin-regulated chemokine (C-C motif) ligand 28 (CCL28) expression in colon tumors. Activation of the ß-catenin/CCL28 axis leads to elevated intra-tumoral immunosuppressive CD25+FOXP3+ Treg cells. Blockade of the ß-catenin/CCL28 axis releases the immunosuppression to enhance the intra-tumoral anti-tumor response, which decreases CRC progression under HFD treatment. Pharmacological inhibition of BSH reduces HFD-accelerated CRC progression, coincident with suppression of the ß-catenin/CCL28 pathway. These findings provide insights into the pro-carcinogenetic role of Bacteroides in obesity-related CRC progression and characterize BSH as a potential target for CRC prevention and treatment.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Mice , Bacteroides/genetics , Bacteroides/metabolism , beta Catenin/metabolism , Amidohydrolases/genetics , Carcinogenesis , Obesity/complications , Bile Acids and Salts , Colorectal Neoplasms/pathology
7.
Hepatology ; 77(1): 239-255, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35460276

ABSTRACT

BACKGROUND AND AIMS: Peroxisome proliferator-activated receptor α (PPARα) regulates fatty acid transport and catabolism in liver. However, the role of intestinal PPARα in lipid homeostasis is largely unknown. Here, intestinal PPARα was examined for its modulation of obesity and NASH. APPROACH AND RESULTS: Intestinal PPARα was activated and fatty acid-binding protein 1 (FABP1) up-regulated in humans with obesity and high-fat diet (HFD)-fed mice as revealed by using human intestine specimens or HFD/high-fat, high-cholesterol, and high-fructose diet (HFCFD)-fed C57BL/6N mice and PPARA -humanized, peroxisome proliferator response element-luciferase mice. Intestine-specific Ppara or Fabp1 disruption in mice fed a HFD or HFCFD decreased obesity-associated metabolic disorders and NASH. Molecular analyses by luciferase reporter assays and chromatin immunoprecipitation assays in combination with fatty acid uptake assays in primary intestinal organoids revealed that intestinal PPARα induced the expression of FABP1 that in turn mediated the effects of intestinal PPARα in modulating fatty acid uptake. The PPARα antagonist GW6471 improved obesity and NASH, dependent on intestinal PPARα or FABP1. Double-knockout ( Ppara/Fabp1ΔIE ) mice demonstrated that intestinal Ppara disruption failed to further decrease obesity and NASH in the absence of intestinal FABP1. Translationally, GW6471 reduced human PPARA-driven intestinal fatty acid uptake and improved obesity-related metabolic dysfunctions in PPARA -humanized, but not Ppara -null, mice. CONCLUSIONS: Intestinal PPARα signaling promotes NASH progression through regulating dietary fatty acid uptake through modulation of FABP1, which provides a compelling therapeutic target for NASH treatment.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Obesity/metabolism , Mice, Knockout , Intestines , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fatty Acids/metabolism
8.
Acta Pharmacol Sin ; 44(1): 145-156, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35655096

ABSTRACT

Propolis is commonly used in traditional Chinese medicine. Studies have demonstrated the therapeutic effects of propolis extracts and its major bioactive compound caffeic acid phenethyl ester (CAPE) on obesity and diabetes. Herein, CAPE was found to have pharmacological activity against nonalcoholic fatty liver disease (NAFLD) in diet-induced obese mice. CAPE, previously reported as an inhibitor of bacterial bile salt hydrolase (BSH), inhibited BSH enzymatic activity in the gut microbiota when administered to mice. Upon BSH inhibition by CAPE, levels of tauro-ß-muricholic acid were increased in the intestine and selectively suppressed intestinal farnesoid X receptor (FXR) signaling. This resulted in lowering of the ceramides in the intestine that resulted from increased diet-induced obesity. Elevated intestinal ceramides are transported to the liver where they promoted fat production. Lowering FXR signaling was also accompanied by increased GLP-1 secretion. In support of this pathway, the therapeutic effects of CAPE on NAFLD were absent in intestinal FXR-deficient mice, and supplementation of mice with C16-ceramide significantly exacerbated hepatic steatosis. Treatment of mice with an antibiotic cocktail to deplete BSH-producing bacteria also abrogated the therapeutic activity of CAPE against NAFLD. These findings demonstrate that CAPE ameliorates obesity-related steatosis at least partly through the gut microbiota-bile acid-FXR pathway via inhibiting bacterial BSH activity and suggests that propolis enriched with CAPE might serve as a promising therapeutic agent for the treatment of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Propolis , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Propolis/metabolism , Propolis/pharmacology , Propolis/therapeutic use , Intestines , Liver/metabolism , Obesity/drug therapy , Bacteria/metabolism , Ceramides/metabolism , Bile Acids and Salts/metabolism , Mice, Inbred C57BL
9.
Nature ; 610(7932): 562-568, 2022 10.
Article in English | MEDLINE | ID: mdl-36261549

ABSTRACT

Tobacco smoking is positively correlated with non-alcoholic fatty liver disease (NAFLD)1-5, but the underlying mechanism for this association is unclear. Here we report that nicotine accumulates in the intestine during tobacco smoking and activates intestinal AMPKα. We identify the gut bacterium Bacteroides xylanisolvens as an effective nicotine degrader. Colonization of B. xylanisolvens reduces intestinal nicotine concentrations in nicotine-exposed mice, and it improves nicotine-exacerbated NAFLD progression. Mechanistically, AMPKα promotes the phosphorylation of sphingomyelin phosphodiesterase 3 (SMPD3), stabilizing the latter and therefore increasing intestinal ceramide formation, which contributes to NAFLD progression to non-alcoholic steatohepatitis (NASH). Our results establish a role for intestinal nicotine accumulation in NAFLD progression and reveal an endogenous bacterium in the human intestine with the ability to metabolize nicotine. These findings suggest a possible route to reduce tobacco smoking-exacerbated NAFLD progression.


Subject(s)
Bacteria , Intestines , Nicotine , Non-alcoholic Fatty Liver Disease , Tobacco Smoking , Animals , Humans , Mice , Bacteria/drug effects , Bacteria/metabolism , Ceramides/biosynthesis , Nicotine/adverse effects , Nicotine/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/microbiology , Sphingomyelin Phosphodiesterase/metabolism , Tobacco Smoking/adverse effects , Tobacco Smoking/metabolism , Intestines/drug effects , Intestines/microbiology , AMP-Activated Protein Kinases/metabolism , Disease Progression
10.
Hepatol Commun ; 6(12): 3363-3378, 2022 12.
Article in English | MEDLINE | ID: mdl-36196594

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a rapidly developing pathology around the world, with limited treatment options available. Some farnesoid X receptor (FXR) agonists have been applied in clinical trials for NASH, but side effects such as pruritus and low-density lipoprotein elevation have been reported. Intestinal FXR is recognized as a promising therapeutic target for metabolic diseases. Glycine-ß-muricholic acid (Gly-MCA) is an intestine-specific FXR antagonist previously shown to have favorable metabolic effects on obesity and insulin resistance. Herein, we identify a role for Gly-MCA in the pathogenesis of NASH, and explore the underlying molecular mechanism. Gly-MCA improved lipid accumulation, inflammatory response, and collagen deposition in two different NASH models. Mechanistically, Gly-MCA decreased intestine-derived ceramides by suppressing ceramide synthesis-related genes via decreasing intestinal FXR signaling, leading to lower liver endoplasmic reticulum (ER) stress and proinflammatory cytokine production. The role of bile acid metabolism and adiposity was excluded in the suppression of NASH by Gly-MCA, and a correlation was found between intestine-derived ceramides and NASH severity. This study revealed that Gly-MCA, an intestine-specific FXR antagonist, has beneficial effects on NASH by reducing ceramide levels circulating to liver via lowering intestinal FXR signaling, and ceramide production, followed by decreased liver ER stress and NASH progression. Intestinal FXR is a promising drug target and Gly-MCA a novel agent for the prevention and treatment of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Ceramides/metabolism , Glycine/pharmacology , Receptors, Cytoplasmic and Nuclear/pharmacology , Intestines , Obesity/drug therapy
11.
NPJ Precis Oncol ; 6(1): 70, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36207498

ABSTRACT

Triple-negative breast cancer (TNBC) patients receive chemotherapy treatment, including doxorubicin, due to the lack of targeted therapies. Drug resistance is a major cause of treatment failure in TNBC and therefore, there is a need to identify biomarkers that determine effective drug response. A pharmacometabolomics study was performed using doxorubicin sensitive and resistant TNBC patient-derived xenograft (PDX) models to detect urinary metabolic biomarkers of treatment effectiveness. Evaluation of metabolite production was assessed by directly studying tumor levels in TNBC-PDX mice and human subjects. Metabolic flux leading to biomarker production was determined using stable isotope-labeled tracers in TNBC-PDX ex vivo tissue slices. Findings were validated in 12-h urine samples from control (n = 200), ER+/PR+ (n = 200), ER+/PR+/HER2+ (n = 36), HER2+ (n = 81) and TNBC (n = 200) subjects. Diacetylspermine was identified as a urine metabolite that robustly changed in response to effective doxorubicin treatment, which persisted after the final dose. Urine diacetylspermine was produced by the tumor and correlated with tumor volume. Ex vivo tumor slices revealed that doxorubicin directly increases diacetylspermine production by increasing tumor spermidine/spermine N1-acetyltransferase 1 expression and activity, which was corroborated by elevated polyamine flux. In breast cancer patients, tumor diacetylspermine was elevated compared to matched non-cancerous tissue and increased in HER2+ and TNBC compared to ER+ subtypes. Urine diacetylspermine was associated with breast cancer tumor volume and poor tumor grade. This study describes a pharmacometabolomics strategy for identifying cancer metabolic biomarkers that indicate drug response. Our findings characterize urine diacetylspermine as a non-invasive biomarker of doxorubicin effectiveness in TNBC.

12.
J Biol Chem ; 298(11): 102530, 2022 11.
Article in English | MEDLINE | ID: mdl-36209823

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Male , Mice , Bile Acids and Salts , Cholesterol/metabolism , Diabetes Mellitus, Type 2/complications , Diet, Western , Fatty Acids , Fibrosis , Inflammation/complications , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, G-Protein-Coupled/metabolism
13.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35838048

ABSTRACT

The metabolic dependencies of cancer cells have substantial potential to be exploited to improve the diagnosis and treatment of cancer. Creatine riboside (CR) is identified as a urinary metabolite associated with risk and prognosis in lung and liver cancer. However, the source of high CR levels in patients with cancer as well as their implications for the treatment of these aggressive cancers remain unclear. By integrating multiomics data on lung and liver cancer, we have shown that CR is a cancer cell-derived metabolite. Global metabolomics and gene expression analysis of human tumors and matched liquid biopsies, together with functional studies, revealed that dysregulation of the mitochondrial urea cycle and a nucleotide imbalance were associated with high CR levels and indicators of a poor prognosis. This metabolic phenotype was associated with reduced immune infiltration and supported rapid cancer cell proliferation that drove aggressive tumor growth. CRhi cancer cells were auxotrophic for arginine, revealing a metabolic vulnerability that may be exploited therapeutically. This highlights the potential of CR not only as a poor-prognosis biomarker but also as a companion biomarker to inform the administration of arginine-targeted therapies in precision medicine strategies to improve survival for patients with cancer.


Subject(s)
Liver Neoplasms , Ribonucleosides , Arginine/metabolism , Creatine/analogs & derivatives , Creatine/urine , Humans , Ribonucleosides/urine
14.
Acta Pharm Sin B ; 12(5): 2224-2238, 2022 May.
Article in English | MEDLINE | ID: mdl-35646522

ABSTRACT

Although the functions of metabolic enzymes and nuclear receptors in controlling physiological homeostasis have been established, their crosstalk in modulating metabolic disease has not been explored. Genetic ablation of the xenobiotic-metabolizing cytochrome P450 enzyme CYP2E1 in mice markedly induced adipose browning and increased energy expenditure to improve obesity. CYP2E1 deficiency activated the expression of hepatic peroxisome proliferator-activated receptor alpha (PPARα) target genes, including fibroblast growth factor (FGF) 21, that upon release from the liver, enhanced adipose browning and energy expenditure to decrease obesity. Nineteen metabolites were increased in Cyp2e1-null mice as revealed by global untargeted metabolomics, among which four compounds, lysophosphatidylcholine and three polyunsaturated fatty acids were found to be directly metabolized by CYP2E1 and to serve as PPARα agonists, thus explaining how CYP2E1 deficiency causes hepatic PPARα activation through increasing cellular levels of endogenous PPARα agonists. Translationally, a CYP2E1 inhibitor was found to activate the PPARα-FGF21-beige adipose axis and decrease obesity in wild-type mice, but not in liver-specific Ppara-null mice. The present results establish a metabolic crosstalk between PPARα and CYP2E1 that supports the potential for a novel anti-obesity strategy of activating adipose tissue browning by targeting the CYP2E1 to modulate endogenous metabolites beyond its canonical role in xenobiotic-metabolism.

15.
Gastroenterology ; 162(7): 1990-2003, 2022 06.
Article in English | MEDLINE | ID: mdl-35283114

ABSTRACT

BACKGROUND & AIMS: Hepatic energy metabolism is a dynamic process modulated by multiple stimuli. In nonalcoholic fatty liver disease (NAFLD), human studies typically focus on the static fasting state. We hypothesized that unique postprandial alterations in hepatic lipid metabolism are present in NAFLD. METHODS: In a prospective clinical study, 37 patients with NAFLD and 10 healthy control subjects ingested a standardized liquid meal with pre- and postprandial blood sampling. Postprandial plasma lipid kinetics were characterized at the molecular lipid species level by untargeted lipidomics, cluster analysis, and lipid particle isolation, then confirmed in a mouse model. RESULTS: There was a specific increase of multiple plasma diacylglycerol (DAG) species at 4 hours postprandially in patients with NAFLD but not in controls. This was replicated in a nonalcoholic steatohepatitis mouse model, where postprandial DAGs increased in plasma and concomitantly decreased in the liver. The increase in plasma DAGs appears early in the disease course, is dissociated from NAFLD severity and obesity, and correlates with postprandial insulin levels. Immunocapture isolation of very low density lipoprotein in human samples and stable isotope tracer studies in mice revealed that elevated postprandial plasma DAGs reflect hepatic secretion of endogenous, rather than meal-derived lipids. CONCLUSIONS: We identified a selective insulin-related increase in hepatic secretion of endogenously derived DAGs after a mixed meal as a unique feature of NAFLD. DAGs are known to be lipotoxic and associated with atherosclerosis. Although it is still unknown whether the increased exposure to hepatic DAGs contributes to extrahepatic manifestations and cardiovascular risk in NAFLD, our study highlights the importance of extending NAFLD research beyond the fasting state.


Subject(s)
Insulins , Non-alcoholic Fatty Liver Disease , Animals , Diglycerides/metabolism , Humans , Insulins/metabolism , Lipidomics , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Prospective Studies
16.
Food Chem Toxicol ; 160: 112807, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34995708

ABSTRACT

Withaferin A (WA) is a natural steroidal compound with reported hepatoprotective activities against various liver diseases. Whether WA has therapeutic effects on alcoholic liver disease has not been explored. A binge alcoholic liver injury model was employed by feeding C57BL/6J mice an ethanol (EtOH) diet for 10 days followed by an acute dose of EtOH to mimic clinical acute-upon-chronic liver injury. In this binge model, WA significantly reduced the binge EtOH-induced increase of serum aminotransaminase levels and decreased hepatic lipid accumulation. Mechanistically, WA decreased levels of hepatic lipogenesis gene mRNAs in vivo, including Srebp1c, Fasn, Acc1 and Fabp1. In EtOH-treated primary hepatocytes in vitro, WA decreased lipid accumulation by lowering the expression of the lipogenesis gene mRNAs Fasn and Acc1 as well as decreasing hepatocyte death. In the established binge alcoholic liver injury model, WA therapeutically reduced the EtOH-induced increase of serum aminotransaminase levels as well as hepatic lipid accumulation. These results demonstrate that WA reduces EtOH-induced liver injury by inhibiting hepatic lipogenesis, suggesting a potential therapeutic option for treating alcoholic liver injury.


Subject(s)
Ethanol/adverse effects , Lipogenesis/drug effects , Liver Diseases, Alcoholic/drug therapy , Liver Diseases, Alcoholic/physiopathology , Withanolides/administration & dosage , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Animals , Cell Death/drug effects , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/injuries , Liver/physiopathology , Liver Diseases, Alcoholic/etiology , Liver Diseases, Alcoholic/metabolism , Male , Mice , Mice, Inbred C57BL , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
17.
Article in English | MEDLINE | ID: mdl-34856412

ABSTRACT

In addition to maintaining bile acid, cholesterol and glucose homeostasis, farnesoid X receptor (FXR) also regulates fatty acid ß-oxidation (FAO). To explore the different roles of hepatic and intestinal FXR in liver FAO, FAO-associated metabolites, including acylcarnitines and fatty acids, and FXR target gene mRNAs were profiled using an integrated metabolomic and transcriptomic analysis in control (Fxrfl/fl), liver-specific Fxr-null (FxrΔHep) and intestine-specific Fxr-null (FxrΔIE) mice, treated either with the FXR agonist obeticholic acid (OCA) or vehicle (VEH). Activation of FXR by OCA treatment significantly increased fatty acyl-CoA hydrolysis (Acot1) and decreased FAO-associated mRNAs in Fxrfl/fl mice, resulting in reduced levels of total acylcarnitines and relative accumulation of long/medium chain acylcarnitines and fatty acids in liver. FxrΔHep mice responded to OCA treatment in a manner similar to Fxrfl/fl mice while FxrΔIE mice responded differently, thus illustrating that intestinal FXR plays a critical role in the regulation of hepatic FAO. A significant negative-correlation between intestinal FXR-FGF15 and hepatic CREB-PGC1A pathways was observed after both VEH and OCA treatment, suggesting that OCA-induced activation of the intestinal FXR-FGF15 axis downregulates hepatic PGC1α signaling via inactivation of hepatic CREB, thus repressing FAO. This mechanism was confirmed in experiments based on human recombinant FGF19 treatment and intestinal Fgf15-null mice. This study revealed an important role for the intestinal FXR-FGF15 pathway in hepatic FAO repression.


Subject(s)
Bile Acids and Salts
18.
FASEB J ; 35(11): e21968, 2021 11.
Article in English | MEDLINE | ID: mdl-34644426

ABSTRACT

St. John's wort (SJW), from traditional herbs, activates the pregnane X receptor (PXR), a potential drug target for treating inflammatory bowel disease (IBD). However, how SJW alleviates dextran sodium sulfate (DSS)-induced experimental IBD by activating PXR is unknown. To test this, PXR-humanized, wild-type (WT) and Pxr-null mice, primary intestinal organoids cultures, and the luciferase reporter gene assays were employed. In vivo, a diet supplemented with SJW was found to activate intestinal PXR both in WT and PXR-humanized mice, but not in Pxr-null mice. SJW prevented DSS-induced IBD in PXR-humanized and WT mice, but not in Pxr-null mice. In vitro, hyperforin, a major component of SJW, activated PXR and suppressed tumor necrosis factor (TNF)α-induced nuclear factor (NF) κB translocation in primary intestinal organoids from PXR-humanized mice, but not Pxr-null mice. Luciferase reporter gene assays showed that hyperforin dose-dependently alleviated TNFα-induced NFκB transactivation by activating human PXR in Caco2 cells. Furthermore, SJW therapeutically attenuated DSS-induced IBD in PXR-humanized mice. These data indicate the therapeutic potential of SJW in alleviating DSS-induced IBD in vivo, and TNFα-induced NFκB activation in vitro, dependent on PXR activation, which may have clinical implications for using SJW as a herbal drug anti-IBD treatment.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Hypericum/chemistry , Inflammatory Bowel Diseases/drug therapy , Plant Extracts/pharmacology , Pregnane X Receptor/physiology , Animals , Caco-2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/metabolism
19.
Nat Metab ; 3(7): 923-939, 2021 07.
Article in English | MEDLINE | ID: mdl-34211180

ABSTRACT

MYC is a transcription factor with broad biological functions, notably in the control of cell proliferation. Here, we show that intestinal MYC regulates systemic metabolism. We find that MYC expression is increased in ileum biopsies from individuals with obesity and positively correlates with body mass index. Intestine-specific reduction of MYC in mice improves high-fat-diet-induced obesity, insulin resistance, hepatic steatosis and steatohepatitis. Mechanistically, reduced expression of MYC in the intestine promotes glucagon-like peptide-1 (GLP-1) production and secretion. Moreover, we identify Cers4, encoding ceramide synthase 4, catalysing de novo ceramide synthesis, as a MYC target gene. Finally, we show that administration of the MYC inhibitor 10058-F4 has beneficial effects on high-fat-diet-induced metabolic disorders, and is accompanied by increased GLP-1 and reduced ceramide levels in serum. This study positions intestinal MYC as a putative drug target against metabolic diseases, including non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.


Subject(s)
Intestinal Mucosa/metabolism , Obesity/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Biomarkers , Diet, High-Fat , Disease Models, Animal , Disease Susceptibility , Glucagon-Like Peptide 1/metabolism , Humans , Ilium/metabolism , Insulin Resistance , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/etiology , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics
20.
Xenobiotica ; 51(9): 1047-1059, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34319859

ABSTRACT

Podophyllotoxin (POD) is a natural compound with antiviral and anticancer activities. The purpose of the present study was to determine the metabolic map of POD in vitro and in vivo.Mouse and human liver microsomes were employed to identify POD metabolites in vitro and recombinant drug-metabolizing enzymes were used to identify the mono-oxygenase enzymes involved in POD metabolism. All in vitro incubation mixtures and bile samples from mice treated with POD were analysed with ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry.A total of 38metabolites, including six phase-I metabolites and 32 phase-II metabolites, of POD were identified from bile and faeces samples after oral administration, and their structures were elucidated through interpreting MS/MS fragmentation patterns.Nine metabolites, including two phase-I metabolites, five glucuronide conjugates, and two GSH conjugates were detected in both human and mouse liver microsome incubation systems and the generation of all metabolites were NADPH-dependent. The main phase-I enzymes involved in metabolism of POD in vitro include CYP2C9, CYP2C19, CYP3A4, and CYP3A5.POD administration to mice caused hepatic and intestinal toxicity, and the cellular damage was exacerbated when 1-aminobenzotriazole, a broad-spectrum inhibitor of CYPs, was administered with POD, indicating that POD, but not its metabolites, induced hepatic and intestinal toxicities.This study elucidated the metabolic map and provides important reference basis for the safety evaluation and rational for the clinical application of POD.


Subject(s)
Chemical and Drug Induced Liver Injury , Tandem Mass Spectrometry , Animals , Antiviral Agents/toxicity , Chromatography, High Pressure Liquid , Mice , Microsomes, Liver , Podophyllotoxin
SELECTION OF CITATIONS
SEARCH DETAIL
...