Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(12): e0220220, 2019.
Article in English | MEDLINE | ID: mdl-31834921

ABSTRACT

Mutations in the epithelial polarity gene crumbs (crb) lead to retinal degeneration in Drosophila and in humans. The overall morphology of the retina and its deterioration in Drosophila crb mutants has been well-characterized, but the cell biological origin of the degeneration is not well understood. Degenerative conditions in the retina and elsewhere in the nervous system often involve defects in degradative intracellular trafficking pathways. So far, however, effects of crb on the endolysosomal system, or on the spatial organization of these compartments in photoreceptor cells have not been described. We therefore asked whether photoreceptors in crb mutants exhibit alterations in endolysosomal compartments under pre-degenerative conditions, where the retina is still morphologically intact. Data presented here show that, already well before the onset of degeneration, Arl8, Rab7, and Atg8-carrying endolysosomal and autophagosomal compartments undergo changes in morphology and positioning with respect to each other in crb mutant retinas. We propose that these changes may be early signs of the degeneration-prone condition in crb retinas.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Retinal Degeneration/genetics , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Animals , Cell Polarity/genetics , Drosophila melanogaster/genetics , Endosomes/metabolism , Eye Proteins/genetics , Photoreceptor Cells, Invertebrate/metabolism , Protein Transport/genetics , Retina/metabolism , Retinal Degeneration/prevention & control , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
2.
J Mol Biol ; 430(18 Pt B): 3439-3453, 2018 09 14.
Article in English | MEDLINE | ID: mdl-29746852

ABSTRACT

The amyloid-beta (Aß) peptide, commonly found in elevated levels in the brains of patients with Alzheimer's disease (AD) and in the cerebrospinal fluid of individuals presenting mild cognitive impairment, is thought to be one of the major factors resulting in the onset of AD. Although observed and studied at the molecular level for several decades, the exact disease pathology of AD is still not totally clear. One way in which Aß is thought to affect neurons is by influencing cell membrane fluidity, which could result in abnormal synaptic or signaling function. The effects of Aß on the fluidity of biological membranes have been studied using numerous membrane models such as artificial lipid bilayers and vesicles, living cells and membranes extracted from animal models of AD, yet there is still no consensus as to what effects Aß has, if any, on membrane fluidity. As one of the most precise and accurate means of assaying membrane dynamics, we have thus chosen fluorescence correlation spectroscopy to investigate the issue, using fluorescent membrane-targeted probes on living cells treated with Aß(1-42) oligomers and observing possible changes in membrane diffusion. Effects of Aß on viability in different cell types varied from no detectable effect to extensive cell death by 72 h post-exposure. However, there was no change in the fluidity of either ordered membrane domains or the bulk membrane in any of these cells within this period. Our conclusion from these results is that perturbation of membrane fluidity is not likely to be a factor in acute Aß-induced cytotoxicity.


Subject(s)
Amyloid beta-Peptides/chemistry , Cell Membrane/chemistry , Membrane Fluidity , Neurons , Alzheimer Disease , Amyloid beta-Peptides/metabolism , Cell Line , Cell Membrane/metabolism , Humans , Molecular Weight , Neurons/metabolism , Protein Binding , Protein Multimerization , Recombinant Fusion Proteins , Spectrometry, Fluorescence
3.
Adv Healthc Mater ; 4(6): 911-7, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25650337

ABSTRACT

A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.


Subject(s)
Gold/chemistry , Membrane Microdomains/metabolism , Metal Nanoparticles , Peptides/metabolism , Sphingolipids/metabolism , Amino Acid Sequence , Membrane Microdomains/chemistry , Molecular Sequence Data
4.
Elife ; 3: e03695, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25318069

ABSTRACT

Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell-burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition--resulting from a well-coordinated sequence of mechanochemical events--suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment.


Subject(s)
Lipid Bilayers/chemistry , Osmosis , Phase Transition , Unilamellar Liposomes/chemistry , Animals , Chickens , Hypertonic Solutions/pharmacology , Hypotonic Solutions/pharmacology , Osmosis/drug effects , Permeability/drug effects , Phase Transition/drug effects , Porosity
5.
BMC Res Notes ; 7: 274, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24885944

ABSTRACT

BACKGROUND: Single molecule tracking (SMT) analysis of fluorescently tagged lipid and protein probes is an attractive alternative to ensemble averaged methods such as fluorescence correlation spectroscopy (FCS) or fluorescence recovery after photobleaching (FRAP) for measuring diffusion in artificial and plasma membranes. The meaningful estimation of diffusion coefficients and their errors is however not straightforward, and is heavily dependent on sample type, acquisition method, and equipment used. Many approaches require advanced computing and programming skills for their implementation. FINDINGS: Here we present TrackArt software, an accessible graphic interface for simulation and complex analysis of multiple particle paths. Imported trajectories can be filtered to eliminate spurious or corrupted tracks, and are then analyzed using several previously described methodologies, to yield single or multiple diffusion coefficients, their population fractions, and estimated errors. We use TrackArt to analyze the single-molecule diffusion behavior of a sphingolipid analog SM-Atto647N, in mica supported DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) bilayers. Fitting with a two-component diffusion model confirms the existence of two separate populations of diffusing particles in these bilayers on mica. As a demonstration of the TrackArt workflow, we characterize and discuss the effective activation energies required to increase the diffusion rates of these populations, obtained from Arrhenius plots of temperature-dependent diffusion. Finally, TrackArt provides a simulation module, allowing the user to generate models with multiple particle trajectories, diffusing with different characteristics. Maps of domains, acting as impermeable or permeable obstacles for particles diffusing with given rate constants and diffusion coefficients, can be simulated or imported from an image. Importantly, this allows one to use simulated data with a known diffusion behavior as a comparison for results acquired using particular algorithms on actual, "natural" samples whose diffusion behavior is to be extracted. It can also serve as a tool for demonstrating diffusion principles. CONCLUSIONS: TrackArt is an open source, platform-independent, Matlab-based graphical user interface, and is easy to use even for those unfamiliar with the Matlab programming environment. TrackArt can be used for accurate simulation and analysis of complex diffusion data, such as diffusion in lipid bilayers, providing publication-quality formatted results.


Subject(s)
Aluminum Silicates/chemistry , Computer Simulation , Lipid Bilayers/chemistry , Software , Statistics as Topic , User-Computer Interface , Diffusion , Glycerylphosphorylcholine/analogs & derivatives , Glycerylphosphorylcholine/chemistry , Phosphatidylcholines , Temperature
6.
J Vis Exp ; (88)2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24961277

ABSTRACT

Supported lipid bilayers (SLBs) are widely used as a model for studying membrane properties (phase separation, clustering, dynamics) and its interaction with other compounds, such as drugs or peptides. However SLB characteristics differ depending on the support used. Commonly used techniques for SLB imaging and measurements are single molecule fluorescence microscopy, FCS and atomic force microscopy (AFM). Because most optical imaging studies are carried out on a glass support, while AFM requires an extremely flat surface (generally mica), results from these techniques cannot be compared directly, since the charge and smoothness properties of these materials strongly influence diffusion. Unfortunately, the high level of manual dexterity required for the cutting and gluing thin slices of mica to the glass slide presents a hurdle to routine use of mica for SLB preparation. Although this would be the method of choice, such prepared mica surfaces often end up being uneven (wavy) and difficult to image, especially with small working distance, high numerical aperture lenses. Here we present a simple and reproducible method for preparing thin, flat mica surfaces for lipid vesicle deposition and SLB preparation. Additionally, our custom made chamber requires only very small volumes of vesicles for SLB formation. The overall procedure results in the efficient, simple and inexpensive production of high quality lipid bilayer surfaces that are directly comparable to those used in AFM studies.


Subject(s)
Aluminum Silicates/chemistry , Image Processing, Computer-Assisted/methods , Lipid Bilayers/chemistry , Microscopy/instrumentation , Microscopy/methods , Optical Phenomena
7.
Faraday Discuss ; 161: 167-76; discussion 273-303, 2013.
Article in English | MEDLINE | ID: mdl-23805742

ABSTRACT

We report the experimental observation of osmotically induced transient pearling instabilities in vesicular membranes. Giant phospholipid vesicles subjected to negative osmotic gradient, which drives the influx of water in to the vesicular interior, produces transient cylindrical protrusions. These protrusions exhibit a remarkable pearling intermediate, which facilitates their subsequent retraction. The pearling front propagates from the distal free end of the protrusion toward the vesicular source and accompanies gradual shortening of the protrusion via pearl-pearl coalescence. Real-time introduction of a positive osmotic gradient, on the other hand, drives vigorous shape fluctuations, which in turn produce cylindrical, prolate- and pear-shaped intermediates presumably due to an increased vesicular area relative to the encapsulated volume. These intermediates transiently produce a pearled state prior to their fission. In both cases, the transient pearling state gives rise to an array of stable spherical daughter vesicles, which may be connected to one another by fine tethers not resolved in our experiments. These results may have implications for self-reproduction in primitive, protein-free, cells.


Subject(s)
Cell Membrane/chemistry , Phospholipids/chemistry , Microscopy, Fluorescence , Osmosis , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Sucrose/chemistry , X-Ray Diffraction
8.
Front Physiol ; 3: 120, 2012.
Article in English | MEDLINE | ID: mdl-22586404

ABSTRACT

We report observations of large-scale, in-plane and out-of-plane membrane deformations in giant uni- and multilamellar vesicles composed of binary and ternary lipid mixtures in the presence of net transvesicular osmotic gradients. The lipid mixtures we examined consisted of binary mixtures of DOPC and DPPC lipids and ternary mixtures comprising POPC, sphingomyelin and cholesterol over a range of compositions - both of which produce co-existing phases for selected ranges of compositions at room temperature under thermodynamic equilibrium. In the presence of net osmotic gradients, we find that the in-plane phase separation potential of these mixtures is non-trivially altered and a variety of out-of-plane morphological remodeling events occur. The repertoire of membrane deformations we observe display striking resemblance to their biological counterparts in live cells encompassing vesiculation, membrane fission and fusion, tubulation and pearling, as well as expulsion of entrapped vesicles from multicompartmental giant unilamellar vesicles through large, self-healing transient pores. These observations suggest that the forces introduced by simple osmotic gradients across membrane boundaries could act as a trigger for shape-dependent membrane and vesicle trafficking activities. We speculate that such coupling of osmotic gradients with membrane properties might have provided lipid-mediated mechanisms to compensate for osmotic stress during the early evolution of membrane compartmentalization in the absence of osmoregulatory protein machinery.

9.
Chemphyschem ; 13(11): 2784-94, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22615144

ABSTRACT

Camera-based fluorescence correlation spectroscopy (FCS) approaches allow the measurement of thousands of contiguous points yielding excellent statistics and details of sample structure. Imaging total internal reflection FCS (ITIR-FCS) provides these measurements on lipid membranes. Herein, we determine the influence of the point spread function (PSF) of the optical system, the laser power used, and the time resolution of the camera on the accuracy of diffusion coefficient and concentration measurements. We demonstrate that the PSF can be accurately determined by ITIR-FCS and that the laser power and time resolution can be varied over a wide range with limited influence on the measurement of the diffusion coefficient whereas the concentration measurements are sensitive to changes in the measurement parameters. One advantage of ITIR-FCS is that the measurement of the PSF has to be performed only once for a given optical setup, in contrast to confocal FCS in which calibrations have to be performed at least once per measurement day. Using optimized experimental conditions we provide diffusion coefficients for over ten different lipid membranes consisting of one, two and three constituents, measured in over 200,000 individual correlation functions. Using software binning and thus the inherent advantage of ITIR-FCS of providing multiple observation areas in a single measurement we test the FCS diffusion law and show how they can be complemented by the local information provided by the difference in cross-correlation functions (ΔCCF). With the determination of the PSF by ITIR-FCS and the optimization of measurement conditions ITIR-FCS becomes a calibration-free method. This allows us to provide measurements of absolute diffusion coefficients for bilayers with different compositions, which were stable over many different bilayer preparations over a time of at least one year, using a single PSF calibration.


Subject(s)
Lipid Bilayers/chemistry , Spectrometry, Fluorescence/standards , Calibration , Diffusion
10.
BioData Min ; 1(1): 10, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-19014586

ABSTRACT

BACKGROUND: Dysfunction in the endolysosome, a late endosomal to lysosomal degradative intracellular compartment, is an early hallmark of some neurodegenerative diseases, in particular Alzheimer's disease. However, the subtle morphological changes in compartments of affected neurons are difficult to quantify quickly and reliably, making this phenotype inaccessible as either an early diagnostic marker, or as a read-out for drug screening. METHODS: We present a method for automatic detection of fluorescently labeled endolysosomes in degenerative neurons in situ. The Drosophila blue cheese (bchs) mutant was taken as a genetic neurodegenerative model for direct in situ visualization and quantification of endolysosomal compartments in affected neurons. Endolysosomal compartments were first detected automatically from 2-D image sections using a combination of point-wise multi-scale correlation and normalized correlation operations. This detection algorithm performed well at recognizing fluorescent endolysosomes, unlike conventional convolution methods, which are confounded by variable intensity levels and background noise. Morphological feature differences between endolysosomes from wild type vs. degenerative neurons were then quantified by multivariate profiling and support vector machine (SVM) classification based on compartment density, size and contrast distribution. Finally, we ranked these distributions according to their profiling accuracy, based on the backward elimination method. RESULTS: This analysis revealed a statistically significant difference between the neurodegenerative phenotype and the wild type up to a 99.9% confidence interval. Differences between the wild type and phenotypes resulting from overexpression of the Bchs protein are detectable by contrast variations, whereas both size and contrast variations distinguish the wild type from either of the loss of function alleles bchs1 or bchs58. In contrast, the density measurement differentiates all three bchs phenotypes (loss of function as well as overexpression) from the wild type. CONCLUSION: Our model demonstrates that neurodegeneration-associated endolysosomal defects can be detected, analyzed, and classified rapidly and accurately as a diagnostic imaging-based screening tool.

SELECTION OF CITATIONS
SEARCH DETAIL
...