Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 40(3): 1318-30, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21976731

ABSTRACT

Compared to protein enzymes, our knowledge about how RNA accelerates chemical reactions is rather limited. The crystal structures of a ribozyme that catalyzes Diels-Alder reactions suggest a rich tertiary architecture responsible for catalysis. In this study, we systematically probe the relevance of crystallographically observed ground-state interactions for catalytic function using atomic mutagenesis in combination with various analytical techniques. The largest energetic contribution apparently arises from the precise shape complementarity between transition state and catalytic pocket: A single point mutant that folds correctly into the tertiary structure but lacks one H-bond that normally stabilizes the pocket is completely inactive. In the rate-limiting chemical step, the dienophile is furthermore activated by two weak H-bonds that contribute ∼7-8 kJ/mol to transition state stabilization, as indicated by the 25-fold slower reaction rates of deletion mutants. These H-bonds are also responsible for the tight binding of the Diels-Alder product by the ribozyme that causes product inhibition. For high catalytic activity, the ribozyme requires a fine-tuned balance between rigidity and flexibility that is determined by the combined action of one inter-strand H-bond and one magnesium ion. A sharp 360° turn reminiscent of the T-loop motif observed in tRNA is found to be important for catalytic function.


Subject(s)
RNA, Catalytic/chemistry , Biocatalysis , Fluorescence Resonance Energy Transfer , Hydrogen Bonding , Mutagenesis , Mutation , Nucleic Acid Conformation , Nucleotides/chemistry
2.
HFSP J ; 1(2): 127-36, 2007 Jul.
Article in English | MEDLINE | ID: mdl-19404418

ABSTRACT

In ribozyme catalysis, metal ions are generally known to make structural andor mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn(2+) binding sites with an upper K(d) of 0.6+/-0.2 muM. In order to characterize each binding site individually, EPR-silent Cd(2+) ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn(2+) binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn(2+) dimer. Based on simulations, the Mn(2+)-Mn(2+) distance within the dimer was found to be approximately 6 A, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...