Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Muscle Res Cell Motil ; 38(2): 251-268, 2017 04.
Article in English | MEDLINE | ID: mdl-28803268

ABSTRACT

The almost complete loss of the membrane cytoskeletal protein dystrophin and concomitant drastic reduction in dystrophin-associated glycoproteins are the underlying mechanisms of the highly progressive neuromuscular disorder Duchenne muscular dystrophy. In order to identify new potential binding partners of dystrophin or proteins in close proximity to the sarcolemmal dystrophin complex, proteomic profiling of the isolated dystrophin-glycoprotein complex was carried out. Subcellular membrane fractionation and detergent solubilisation, in combination with ion exchange, lectin chromatography and density gradient ultracentrifugation, was performed to isolate a dystrophin complex-enriched fraction. Following gradient gel electrophoresis and on-membrane digestion, the protein constituents of the dystrophin fraction were determined by peptide mass spectrometry. This proteomic strategy resulted in the novel identification of desmoglein and desmoplakin, which act as cytolinker proteins and possibly exist in close proximity to the dystrophin complex in the sarcolemma membrane. Interestingly, comparative immunoblotting showed a significant reduction in desmoglein in dystrophin-deficient mdx skeletal muscles, reminiscent of the pathobiochemical fate of the dystrophin-associated core proteins in muscular dystrophy. Comparative membrane proteomics was used to correlate this novel finding to large-scale changes in the dystrophic phenotype. A drastic increase in the extracellular stabilizers biglycan and fibronectin was shown by both mass spectrometric analysis and immunoblotting. The reduced expression of desmoglein in dystrophin-deficient skeletal muscles, and simultaneous increase in components of the extracellular matrix, suggest that muscular dystrophy is associated with plasmalemmal disintegration, loss of cellular linkage and reactive myofibrosis.


Subject(s)
Biglycan/metabolism , Chromatography, Liquid/methods , Desmogleins/metabolism , Fibronectins/metabolism , Proteomics/methods , Animals , Dystrophin , Mass Spectrometry/methods , Mice
2.
J Anat ; 231(5): 736-748, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28762259

ABSTRACT

The bones of the mammalian skull respond plastically to changes in masticatory function. However, the extent to which muscle function affects the growth and development of the skull, whose regions have different maturity patterns, remains unclear. Using muscle dissection and 3D landmark-based geometric morphometrics we investigated the effect of changes in muscle function established either before or after weaning, on skull shape and muscle mass in adult mice. We compared temporalis and masseter mass and skull shape in mice with a congenital muscle dystrophy (mdx) and wild type (wt) mice fed on either a hard or a soft diet. We found that dystrophy and diet have distinct effects on the morphology of the skull and the masticatory muscles. Mdx mice show a flattened neurocranium with a more dorsally displaced foramen magnum and an anteriorly placed mandibular condyle compared with wt mice. Compared with hard diet mice, soft diet mice had lower masseter mass and a face with more gracile features as well as labially inclined incisors, suggesting reduced bite strength. Thus, while the early-maturing neurocranium and the posterior portion of the mandible are affected by the congenital dystrophy, the late-maturing face including the anterior part of the mandible responds to dietary differences irrespective of the mdx mutation. Our study confirms a hierarchical, tripartite organisation of the skull (comprising neurocranium, face and mandible) with a modular division based on development and function. Moreover, we provide further experimental evidence that masticatory loading is one of the main environmental stimuli that generate craniofacial variation.


Subject(s)
Diet , Masticatory Muscles/anatomy & histology , Muscular Dystrophies/complications , Skull/anatomy & histology , Animals , Bite Force , Male , Mastication/physiology , Mice , Mice, Inbred mdx
3.
Molecules ; 20(6): 11317-44, 2015 Jun 19.
Article in English | MEDLINE | ID: mdl-26102067

ABSTRACT

The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.


Subject(s)
Annexins/isolation & purification , Dystrophin/isolation & purification , Lamins/isolation & purification , Muscular Dystrophy, Duchenne/diagnosis , Vimentin/isolation & purification , Animals , Annexins/biosynthesis , Dystrophin/biosynthesis , Gene Expression Regulation , Humans , Lamins/biosynthesis , Mass Spectrometry , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Proteome , Vimentin/biosynthesis
4.
Pflugers Arch ; 467(9): 1965-74, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25394886

ABSTRACT

Duchenne muscular dystrophy (DMD) is a human genetic disease characterized by fibrosis and severe muscle weakness. Currently, there is no effective treatment available to prevent progressive fibrosis in skeletal muscles. The serum- and glucocorticoid-inducible kinase SGK1 regulates a variety of physiological functions and participates in fibrosis stimulation. Here, we investigated whether SGK1 influences structure, function and/or fibrosis of the muscles from the mdx mouse, an animal model for DMD. As expected, mdx muscles showed the typical pathological features of muscular dystrophy including fiber size variations, central nuclei of muscle fibers, fibrosis in the diaphragm, and force reduction by 30-50 %. Muscles from sgk1 (-/-) mice were histologically overall intact and specific force was only slightly reduced compared to wild-type muscles. Surprisingly, soleus and diaphragm muscles of mdx/sgk1 (-/-) mice displayed forces close to wild-type levels. Most muscle fibers of the double mutants contained central nuclei, but fibrosis was not observed in any of the tested limb and diaphragm muscles. We conclude that the sole lack of SGK1 in mouse muscle does not lead to pronounced changes in muscle structure and function. However, dystrophin-deficient mdx muscle seems to benefit from SGK1 deficiency. SGK1 appears to be an important enzyme in the process of fibrotic remodeling and subsequent weakness of dystrophin-deficient mouse muscle.


Subject(s)
Immediate-Early Proteins/metabolism , Muscle Strength/physiology , Muscle, Skeletal/physiology , Muscular Dystrophy, Duchenne/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal , Fibrosis/metabolism , Immediate-Early Proteins/deficiency , Male , Mice , Mice, Inbred mdx , Mice, Knockout , Muscle, Skeletal/pathology , Protein Serine-Threonine Kinases/deficiency
5.
J Virol ; 83(7): 3389-96, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19144717

ABSTRACT

After fusion of the envelope of herpesvirus particles with the host cell plasma membrane, incoming nucleocapsids are transported to nuclear pores. Inner tegument proteins pUL36, pUL37, and pUS3 remain attached to the nucleocapsid after entry and therefore might mediate interactions between the nucleocapsid and cellular microtubule-associated motor proteins during transport. To assay for the role of pUL37 in this process, we constructed a pUL37-deleted pseudorabies virus mutant, PrV-DeltaUL37/UL35GFP, which expresses a fusion protein of green fluorescent protein (GFP) and the nonessential small capsid protein pUL35, resulting in the formation of fluorescently labeled capsids. Confocal laser-scanning microscopy of rabbit kidney cells infected with PrV-DeltaUL37/UL35GFP revealed that, whereas penetration was not affected in the absence of pUL37, nuclear translocation of incoming particles was delayed by approximately 1 h compared to PrV-UL35GFP, but not abolished. In contrast, phenotypically complemented pUL37-containing virions of PrV-DeltaUL37/UL35GFP exhibited wild type-like entry kinetics. Thus, the presence of pUL37 is required for rapid nuclear translocation of incoming nucleocapsids.


Subject(s)
Capsid/metabolism , Cell Nucleus/virology , Herpesvirus 1, Suid/physiology , Viral Structural Proteins/metabolism , Animals , Cell Line , Gene Deletion , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Herpesvirus 1, Suid/genetics , Microscopy, Confocal , Protein Transport , Rabbits , Staining and Labeling/methods , Viral Structural Proteins/genetics
6.
J Gen Virol ; 89(Pt 6): 1346-1351, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18474549

ABSTRACT

To facilitate tracing of virion movement, the non-essential capsid proteins pUL35 of herpes simplex virus type 1 and pseudorabies virus (PrV) have been tagged with green fluorescent protein (GFP). However, the biological relevance of PrV pUL35 and the functionality of the fusion proteins have not yet been investigated in detail. We generated PrV mutants either lacking the 12 kDa UL35 gene product, or expressing GFP fused to the N terminus of pUL35. Remarkably, both mutants exhibited significant replication defects in rabbit kidney cells, which could be corrected in pUL35-expressing cells. After intranasal infection of mice both mutants showed delayed neuroinvasion, and survival times of the animals were extended to 3 days, compared with 2 days after wild-type infection. Thus, fusion of pUL35 with GFP resulted in a non-functional protein, which has to be considered for the use of corresponding mutants in tracing studies.


Subject(s)
Capsid Proteins/physiology , Herpesvirus 1, Suid/physiology , Pseudorabies/virology , Animals , Cell Line , Dyspnea/pathology , Green Fluorescent Proteins/metabolism , Mice , Point Mutation , Pseudorabies/pathology , Rabbits , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...