Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(26): 47388-47403, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558668

ABSTRACT

The paper proposes a Wollaston-type crystal polarizer suitable for broadband operation within the visible spectral band up to the far infrared band based on unique optical materials, mercurous halides (Hg2X2). This paper introduces the general characteristics and optical properties of these birefringent tetragonal optical materials, as well as the general description of a Wollaston prism and the process of its parameter optimization. In general, the Wollaston polarizer is constructed from two combined wedge-shaped prisms. The key parameters that affect the properties of the Wollaston polarizer are then the cut angle of these two prisms and the refractive index of the exploited optical cement (immersion) that bonds the prisms together. The optimal prism cut angles and immersion refractive index are investigated to maximize the Wollaston parameters, such as the transmittance of the polarized radiation and the separation angle of the output orthogonally polarized beams. This process is significantly dependent on the characteristics of all selected mercurous halides (Hg2Cl2, Hg2Br2, Hg2I2). The optimal values of the prism cut angle for each material are selected based on the outlined results. In addition, the Wollaston prism behaviour regarding real radiation propagation is modelled in detail via the Zemax optical studio. The presented models aim to aid in the real design and fabrication of a broadband Wollaston polarizer based on mercurous halides.

2.
Sensors (Basel) ; 22(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35062571

ABSTRACT

Fine art photography, paper documents, and other parts of printing that aim to keep value are searching for credible techniques and mediums suitable for long-term archiving purposes. In general, long-lasting pigment-based inks are used for archival print creation. However, they are very often replaced or forged by dye-based inks, with lower fade resistance and, therefore, lower archiving potential. Frequently, the difference between the dye- and pigment-based prints is hard to uncover. Finding a simple tool for countrified identification is, therefore, necessary. This paper assesses the spectral characteristics of dye- and pigment-based ink prints using visible near-infrared (VNIR) hyperspectral imaging. The main aim is to show the spectral differences between these ink prints using a hyperspectral camera and subsequent hyperspectral image processing. Two diverse printers were exploited for comparison, a hobby dye-based EPSON L1800 and a professional pigment-based EPSON SC-P9500. The identical prints created via these printers on three different types of photo paper were recaptured by the hyperspectral camera. The acquired pixel values were studied in terms of spectral characteristics and principal component analysis (PCA). In addition, the obtained spectral differences were quantified by the selected spectral metrics. The possible usage for print forgery detection via VNIR hyperspectral imaging is discussed in the results.

3.
Opt Express ; 29(9): 12813-12832, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985030

ABSTRACT

The paper aims to show the advantages of the infrared-optimised quasi-collinear AOTF (acousto-optic tunable filter) for the spatio-spectral hyperspectral imaging system. The optimisation process is presented based on the selected tetragonal anisotropic materials with exceptional optical and acousto-optical properties in IR (infrared) spectral region. These materials are further compared in terms of their features and suitability for AOTF design. The spectral resolution is considered as the main optimising parameter. Resulting from the analysis, the mercurous chloride (Hg2Cl2) single crystal is selected as a representative of the mercurous halide family for the presentation of the quasi-collinear AOTF model operating in LWIR (long-wave infrared) spectral band. The overall parameters of the AOTF model such as spectral resolution, chromatic field of view, acoustic frequency, and operational power requirements are estimated and discussed in results.

SELECTION OF CITATIONS
SEARCH DETAIL
...