Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 122(2): 024301, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30720309

ABSTRACT

We report on a chiral optical Stern-Gerlach experiment where chiral liquid crystal microspheres are selectively displaced by means of optical forces arising from optical helicity gradients. The present Newtonian experimental demonstration of an effect predicted at molecular scale [New J. Phys. 16, 013020 (2014)NJOPFM1367-263010.1088/1367-2630/16/1/013020] is a first instrumental step in an area restricted so far to theoretical discussions. Extending the Stern-Gerlach experiment legacy to chiral light-matter interactions should foster further studies, for instance towards the elaboration of chirality-enabled quantum technologies or spin-based optoelectronics.

2.
Phys Rev Lett ; 118(20): 203902, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28581805

ABSTRACT

We propose the development of a high-contrast imaging technique enabling the simultaneous and selective nulling of several light sources. This is done by realizing a reconfigurable multiple-vortex phase mask made of a liquid crystal thin film on which local topological features can be addressed electro-optically. The method is illustrated by reporting on a triple-star optical vortex coronagraphy laboratory demonstration, which can be easily extended to higher multiplicity. These results allow considering the direct observation and analysis of worlds with multiple suns and more complex extrasolar planetary systems.

3.
Opt Lett ; 39(20): 5830-3, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25361096

ABSTRACT

We theoretically investigate light self-trapping in nonlinear dielectrics with a reorientational response subject to threshold, specifically nematic liquid crystals. Beyond a finite excitation, two solitary waves exist for any given power, with an hysteretic dynamics due to feedback between beam size, self-focusing and the nonlinear threshold. Soliton stability is discussed on the basis of the system free energy.

4.
Nat Commun ; 5: 5533, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25420491

ABSTRACT

Refraction at a dielectric interface can take an anomalous character in anisotropic crystals, when light is negatively refracted with incident and refracted beams emerging on the same side of the interface normal. In soft matter subject to reorientation, such as nematic liquid crystals, the nonlinear interaction with light allows tuning of the optical properties. We demonstrate that in such material a beam of light can experience either positive or negative refraction depending on input power, as it can alter the spatial distribution of the optic axis and, in turn, the direction of the energy flow when traveling across an interface. Moreover, the nonlinear optical response yields beam self-focusing and spatial localization into a self-confined solitary wave through the formation of a graded-index waveguide, linking the refractive transition to power-driven readdressing of copolarized guided-wave signals, with a number of output ports not limited by diffraction.

5.
Phys Rev Lett ; 113(2): 023901, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062182

ABSTRACT

We investigated bistability with light beams in reorientational nematic liquid crystals. For a range of input powers, beams can propagate as either diffracting or self-trapped, the latter corresponding to spatial solitons. The first-order transition in samples exhibiting abrupt self-focusing with a threshold is in agreement with a simple model.

6.
Opt Express ; 22(25): 30663-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607014

ABSTRACT

We investigate, both theoretically and experimentally, self-trapping of light beams in nematic liquid crystals arranged so as to exhibit the optical Fréedericksz transition in planar cells. The resulting threshold in the nonlinear reorientational response supports a bistable behavior between diffracting and self-localized beam states, leading to the appearance of a hysteretic loop versus input excitation. Our results confirm the role of nematic liquid crystals in the study of non-perturbative nonlinear photonics.

SELECTION OF CITATIONS
SEARCH DETAIL
...