Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892342

ABSTRACT

The synthesis of biphenylmethoxydibenzo[b,f]oxepine or photoswitchable fluorinated dibenzo[b,f]oxepine derivatives with one or three azo bonds, potential microtubule inhibitors, is described. Our studies provide a concise method for constructing derivatives containing the dibenzo[b,f]oxepine skeleton. An analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.


Subject(s)
Tubulin Modulators , Tubulin Modulators/chemical synthesis , Tubulin Modulators/pharmacology , Tubulin Modulators/chemistry , Microtubules/drug effects , Microtubules/metabolism , Molecular Structure
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569442

ABSTRACT

In this short review, including 113 references, issues related to dibenzo[b,f]oxepine derivatives are presented. Dibenzo[b,f]oxepine scaffold is an important framework in medicinal chemistry, and its derivatives occur in several medicinally relevant plants. At the same time, the structure, production, and therapeutic effects of dibenzo[b,f]oxepines have not been extensively discussed thus far and are presented in this review. This manuscript addresses the following issues: extracting dibenzo[b,f]oxepines from plants and its significance in medicine, the biosynthesis of dibenzo[b,f]oxepines, the active synthetic dibenzo[b,f]oxepine derivatives, the potential of dibenzo[b,f]oxepines as microtubule inhibitors, and perspective for applications of dibenzo[b,f]oxepine derivatives. In conclusion, this review describes studies on various structural features and pharmacological actions of dibenzo[b,f]oxepine derivatives.


Subject(s)
Oxepins , Oxepins/chemistry , Oxepins/pharmacology
3.
Cells ; 12(14)2023 07 16.
Article in English | MEDLINE | ID: mdl-37508530

ABSTRACT

Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds, two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7). The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism of action as microtubule photoswitchable destabilisers. The presented results provide a foundation towards the synthesis and development of a novel class of photoswitchable colchicine-based microtubule polymerisation inhibitors.


Subject(s)
Antineoplastic Agents , Colchicine , Colchicine/pharmacology , Antineoplastic Agents/pharmacology , Tubulin/metabolism , Microtubules/metabolism , Paclitaxel/pharmacology
4.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110792

ABSTRACT

Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and ß-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.


Subject(s)
Antineoplastic Agents , Neoplasms , Stilbenes , Humans , Tubulin/metabolism , Stilbenes/chemistry , Oxepins/metabolism , HEK293 Cells , Neoplasms/drug therapy , Neoplasms/metabolism , Microtubules/metabolism , Antineoplastic Agents/chemistry , Colchicine/chemistry , Tubulin Modulators/chemistry , Binding Sites , Cell Proliferation
5.
Molecules ; 27(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36144571

ABSTRACT

Dibenzo[b, f]oxepine derivatives are an important scaffold in natural, medicinal chemistry, and these derivatives occur in several medicinally relevant plants. Two dibenzo[b, f]oxepines were selected and connected with appropriate fluorine azobenzenes. In the next step, the geometry of E/Z isomers was analyzed using density functional theory (DFT) calculations. Then the energies of the HOMO and LUMO orbitals were calculated for the E/Z isomers to determine the HOMO-LUMO gap. Next, modeling of the interaction between the obtained isomers of the compounds and the colchicine α and ß-tubulin binding site was performed. The investigated isomers interact with the colchicine binding site in tubulin with a part of the dibenzo[b, f]oxepine or in a part of the azo switch, or both at the same time. Based on the UV-VIS spectra, it was found that in the case of compounds with an azo bond in the meta position, the absorption bands n→π* for both geometric isomers and their separation from π→π* are visible. These derivatives therefore have the potential to be used in photopharmacology.


Subject(s)
Oxepins , Tubulin , Binding Sites , Colchicine , Fluorine , Oxepins/chemistry
6.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681697

ABSTRACT

The synthesis of photoswitchable azo-dibenzo[b,f]oxepine derivatives and microtubule inhibitors were described. Subsequently, we examined the reaction of methoxy derivative 3-nitrodibenzo[b,f]oxepine with different aldehydes and in the presence of BF3·OEt2 as a catalyst. Our study provided a very concise method for the construction of the azo-dibenzo[b,f]oxepine skeleton. The analysis of products was run using experimental and theoretical methods. Next, we evaluated the E/Z isomerization of azo-dibenzo[b,f]oxepine derivatives, which could be photochemically controlled using visible-wavelength light.


Subject(s)
Light , Molecular Structure , Photochemistry , Isomerism
7.
Biomed Pharmacother ; 133: 110973, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33378993

ABSTRACT

Microtubules (composed of α- and ß-tubulin heterodimers) ubiquitous cellular polymers are important components of the cytoskeleton and play diverse roles within the cell, such as maintenance of cell structure, protein trafficking or chromosomal segregation during cell division. The polymers of tubulin play a pivotal role in mitosis and are regarded as an excellent target for chemotherapeutic agents to treat cancer. This review presents a brief overview of the synthesis and mechanism of action of new compounds targeting the dynamic of microtubule - tubulin polymerization/depolymerization. It is divided into the following parts: section I concerns targeting microtubules- tubulin-binding drugs derivatives of stilbene. In section II there are presented photoswitchable inhibitors of microtubule dynamics. Section III concerns using macrocyclic compounds as tubulin inhibitors. In this review, the authors focused primarily on reports produced inthe last five years and the latest strategies in this field.


Subject(s)
Antineoplastic Agents/therapeutic use , Macrocyclic Compounds/therapeutic use , Microtubules/drug effects , Neoplasms/drug therapy , Stilbenes/therapeutic use , Tubulin Modulators/therapeutic use , Microtubules/metabolism , Microtubules/pathology , Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/pathology
8.
Molecules ; 25(16)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823874

ABSTRACT

Microtubules (MTs), highly dynamic structures composed of α- and ß-tubulin heterodimers, are involved in cell movement and intracellular traffic and are essential for cell division. Within the cell, MTs are not uniform as they can be composed of different tubulin isotypes that are post-translationally modified and interact with different microtubule-associated proteins (MAPs). These diverse intrinsic factors influence the dynamics of MTs. Extrinsic factors such as microtubule-targeting agents (MTAs) can also affect MT dynamics. MTAs can be divided into two main categories: microtubule-stabilizing agents (MSAs) and microtubule-destabilizing agents (MDAs). Thus, the MT skeleton is an important target for anticancer therapy. This review discusses factors that determine the microtubule dynamics in normal and cancer cells and describes microtubule-MTA interactions, highlighting the importance of tubulin isoform diversity and post-translational modifications in MTA responses and the consequences of such a phenomenon, including drug resistance development.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neoplasms/pathology , Animals , Cell Division , Humans , Neoplasms/metabolism
9.
Biomed Pharmacother ; 123: 109781, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31865147

ABSTRACT

In the present study, the synthesis and cytotoxic effect of six stilbenes and three oxepine derivatives against two cancerous - HeLa and U87, and two normal - EUFA30 and HEK293 cell lines has been reported. The results of cytotoxic assay and flow cytometry analysis revealed that compounds 9-nitrobenzo[b]naphtho[1,2-f]oxepine (4), (E)-3,3',4,4',5,5'-hexamethoxystilbene (6) and 4-hydroxy-2',4'-dinitrostilbene (8) were the most active and their interaction with tubulin (crystal structure from PDB) has been analyzed by computer molecular modeling. Molecular docking of these compounds on colchicine binding site of the tubulin indicates the interaction of (4), (6) and (8) with tubulin. The compound (4) could interact stronger with tubulin, relative to colchicine, however, with no selectivity of action against cancer and normal cells. Conversely, compounds (6) and (8) interact more weakly with tubulin, relative to colchicine but they act more selectively towards cancerous versus normal cell lines. Obtained results proved that the compounds that are the most active against cancerous cells operate through tubulin binding.


Subject(s)
Antineoplastic Agents/pharmacology , Oxepins/pharmacology , Stilbenes/pharmacology , Antineoplastic Agents/chemistry , Binding Sites , Cell Death/drug effects , Cell Line , Colchicine/metabolism , Humans , Inhibitory Concentration 50 , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Oxepins/chemistry , Stilbenes/chemistry , Tubulin/metabolism
10.
Bioorg Chem ; 90: 103073, 2019 09.
Article in English | MEDLINE | ID: mdl-31234131

ABSTRACT

In this short review, including 187 references, the issues of biological activity of stilbene derivatives and nucleosides and the biological and medicinal potential of fusion of these two classes are discussed. The stilbenes, especially the stilbenoids, and nucleosides are both biologically active. Hybrids formed from binding of these compounds have not yet been broadly studied. However, those that have been investigated exhibit desirable medicinal properties. The review is divided in such parts: I. Derivative of stilbene (biomedical investigations, biological activities in cells, enzymes and hazard), parts II. naturally occurred nucleoside and its derivatives: uridine, thymidine and 5-methyluridine, cytidine, adenosine, guanosine and part III. hybrid molecules- drugs and hybrid molecules- nucleoside - stilbene and its derivative.


Subject(s)
Anti-HIV Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Nucleosides/chemistry , Stilbenes/chemistry , Animals , Humans , Nucleosides/pharmacology , Stilbenes/pharmacology
11.
Curr Cancer Drug Targets ; 18(7): 706-717, 2018.
Article in English | MEDLINE | ID: mdl-28669347

ABSTRACT

BACKGROUND: Stilbenes, 1,2-diphenylethen derivatives, including resveratrol and combretastatins, show anticancer features especially against tumor angiogenesis. Fosbretabulin, CA-4, in combination with carboplatin, is in the last stages of clinical tests as an inhibitor of thyroid cancer. The mode of action of these compounds involves suppression of angiogenesis through interfering with tubulin (de)polymerization. OBJECTIVE: We have previously synthesized five E-2-hydroxystilbenes and seven dibenzo [b,f]oxepins in Z configuration, with methyl or nitro groups at varied positions. The aim of the present work was to evaluate the anticancer activity and molecular mechanism(s) of action of these compounds. RESULTS: Two healthy, EUFA30 and HEK293, and two cancerous, HeLa and U87, cell lines were treated with four newly synthetized stilbenes and seven oxepins. Two of these compounds, JJR5 and JJR6, showed the strongest cytotoxic effect against cancerous cells tested and these two were selected for further investigations. They induced apoptosis with sub-G1 or S cell cycle arrest and PARP cleavage, with no visible activation of caspases 3 and 7. Proteomic differential analysis of stilbene-treated cells led to the identification of proteins involved almost exclusively in cell cycle management, apoptosis, DNA repair and stress response, e.g. oxidative stress. CONCLUSION: Among the newly synthesized stilbene derivatives, we selected two as potent anticancer compounds triggering late apoptosis/necrosis in cancerous cells through sub-G1 phase cell cycle arrest. They changed cyclin expression, induced DNA repair mechanisms, enzymes involved in apoptosis and oxidative stress response. Compounds JJR5 and JJR6 can be a base for structure modification(s) to obtain even more active derivatives.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/methods , Oxepins/pharmacology , Stilbenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Binding Sites , Cyclins/metabolism , DNA Repair/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Oxepins/chemical synthesis , Oxepins/metabolism , Oxidative Stress/drug effects , S Phase Cell Cycle Checkpoints/drug effects , Stilbenes/chemical synthesis , Stilbenes/metabolism , Tubulin/metabolism
12.
RSC Adv ; 8(54): 30678-30682, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-35548740

ABSTRACT

A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed. The use of boron trifluoride diethyl etherate as the catalyst, both with and without paraformaldehyde, allows us to obtain new substituted dioxanes, oxanes, cyclic compounds or dimer. The analysis of products was run using experimental and theoretical methods.

13.
J Incl Phenom Macrocycl Chem ; 87(1): 53-65, 2017.
Article in English | MEDLINE | ID: mdl-28255265

ABSTRACT

ABSTRACT: The synthesis of a novel supramolecular system comprising of branched polyethylenimine and cyclodextrin, is presented. The synthesis route is based on the self-assembly phenomena with the inclusion of solvent molecules. The systems are formed by a hydrogen-bonding network and host-guest type interactions between the building blocks. It was found that the native cyclodextrin and polyethylenimine are able to form stable systems when the reaction medium constitutes a polar solvent forming host-guest type complexes with cyclodextrin. A special consideration was paid on the detailed spectroscopic analyses of the obtained water-soluble constructs, including ROESY and diffusion-ordered (DOSY) NMR spectroscopy studies. The versatility and significance of DOSY technique for the analysis of the cyclodextrin complexes and its non-covalent systems with branched polymers, were presented. It was also found that the guest molecules that were incorporated in the complexes exhibited enhanced thermal stability. The morphological details in the solid state were obtained by scanning electron microscope.

14.
J Pharm Biomed Anal ; 130: 169-180, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27260140

ABSTRACT

There are currently no sound estimates of the number of children born with a serious congenital disorder attributable to genetic or environmental causes (World Health Organization) but there is a supposed number of babies born with birth defects per year: in the world approximately 7.9 million children (6% of births). There is conducted population-based screening by the individual countries. The specialised methods are used when it is not possible to diagnose disease in screening. In recent years in the diagnostics of these disorders the methods of Magnetic Resonance Spectroscopy of the brain (in vivo1H-MRS) and high resolution NMR spectroscopy gain in importance. The manuscript focused on developing the method of marking the metabolic diseases markers of various origins using NMR spectroscopy (including synthesis of markers). Considering the disorders occurring among children, according to Hoffman, Zschocke, Nyhan, there are three following groups of inherited metabolic diseases: disorders of intermediary metabolism, disorders of the biosynthesis and breakdown of complex molecules and neurotransmitter defects and related disorders. The presented investigation is focused on: a study of selected compounds that cause disorders of intermediary metabolism, a study of compounds that cause disorders of the biosynthesis and breakdown of complex molecules and a study of compounds that cause neurotransmitter defects and related disorders. In the subsequent chapter of manuscript there are presented the results of investigation concerning the metabolism of xenobiotics that could potentially be used in therapy of inherited metabolic diseases, basing on stilbene derivatives. In the last chapter there are presented the results of experiments with creatinine- the metabolite produced in muscles.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolic Diseases/diagnosis , Metabolic Diseases/metabolism , Xenobiotics/metabolism , Biomarkers/metabolism , Body Fluids/metabolism , Humans , Metabolic Diseases/therapy , Neurotransmitter Agents/metabolism , Xenobiotics/toxicity
15.
Biomed Res Int ; 2014: 320895, 2014.
Article in English | MEDLINE | ID: mdl-25157353

ABSTRACT

We synthesised seven 2-aminestilbenes with methoxy substitents in reactions of dinitrostilbenes with sodium azide. In order to study the positioning of the nitro groups, the optimum structure of obtained stilbenes using the DFT B3LYP/6-311++G(2d,p) method was calculated. Very interesting aspect of this regioselectivity reaction is the fact that in all substrates and synthetized compounds the nitro groups in position 2 were not coplanar whereas the para-nitro groups were coplanar with respect to the benzene ring. Due to unique features of stilbene derivatives, such as antitumor agents, we undertook the studies on the biological properties of new stilbene derivatives. Using five cancer cell lines, we investigated the effects of 2-aminestilbenes with methoxy substitents on cell growth.


Subject(s)
Bibenzyls/pharmacology , Stilbenes/pharmacology , Bibenzyls/chemical synthesis , Bibenzyls/chemistry , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Resveratrol , Stilbenes/chemical synthesis , Stilbenes/chemistry
16.
Biomed Res Int ; 2013: 168512, 2013.
Article in English | MEDLINE | ID: mdl-24078905

ABSTRACT

Uraemic toxins-creatol and N-methylguanidine-are generated in conversion of creatinine in water in the presence of various forms of carbon such as fullerene C60, carbon-encapsulated magnetic nanoparticles, and multiwalled carbon nanotubes and oxygen. The conversion degree for creatinine was different for fullerene C60, CEMNPs, and MWCNTs and was 9% (3.6% creatol, 5.4% N-methylguanidine), 35% (12% creatol, 23% N-methylguanidine), and 75% (16% creatol, 59% N-methylguanidine), respectively.


Subject(s)
Creatinine/analogs & derivatives , Fullerenes/chemistry , Magnetite Nanoparticles/chemistry , Methylguanidine/chemistry , Nanotubes, Carbon/chemistry , Creatinine/chemistry , Creatinine/metabolism , Deuterium , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Protons
17.
J Pharm Biomed Anal ; 49(4): 945-9, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19286340

ABSTRACT

The mixture of creatinine, activated charcoal and water was stirred. As a result the conversion of creatinine into two products was observed. (1)H, (13)C NMR and HMBC spectra were recorded and the chemical shifts assigned. Two uremic toxins: creatol and N-methylguanidine were identified. To interpret the NMR data obtained, the optimum structure of creatol, which can exist in the forms of seven tautomers, has been calculated using the DFT B3LYP/6-311G(2d,p) method. The influence of the solvent was described by the polarizable continuum model (PCM). The calculated energy of the most energetically stable tautomeric form A is lower by 12.2, 16.9, 33.8, 81.5, 106.3, 130.4kJ/mol in water than that of the tautomers B-G, respectively, which suggests that the A form of creatol should prevail in solution. In DMSO, the calculated energy of the most energetically stable tautomeric form A is lower than that of both D and B and the remaining tautomeric forms (C, E-G) are less energetically stable. Subsequently, we sought the correlations between the experimental and the calculated chemical shifts of protons and carbons-13 for the forms -A, B (in water) and A, B, D (in DMSO) - of creatol. The population of the A tautomer is predominant in both H(2)O and DMSO. We have also recorded the spectra of creatol and N-methylguanidine at different pH. Our data are complete enough to be used in the analysis of body fluids.


Subject(s)
Charcoal/chemistry , Creatinine/analogs & derivatives , Methylguanidine/chemical synthesis , Uremia/chemically induced , Creatinine/chemistry , Hydrogen-Ion Concentration , Indicators and Reagents , Magnetic Resonance Spectroscopy , Methylguanidine/toxicity , Solvents
18.
Article in English | MEDLINE | ID: mdl-16920395

ABSTRACT

Five creatinine derivatives were prepared by the treatment of creatinine with activated carbon and appropriate alcohol (1-4), or ammonia solution (5). Product structures were determined by 1H and 13C NMR spectroscopy in solution, including 2D HSQC and HMBC experiments. Then, the proton and carbon chemical shifts for these compounds were calculated using GIAO-DFT [B3LYP/6-311G(2d,p)] method and the Gaussian 03W program and furthermore for 1 and 5 using polarizable continuum model (PCM). The conclusions coming from the comparison of the experimental and theoretical spectra supported the adopted signal assignments and solved the structural problems due to the potential annular tautomerism of the investigated compounds. One can predict that 5-substituted creatinines, just like creatinine, appear in solution in the form of 2-amino-1,5-dihydro-1-methyl-4-imidazolone. Correlations between experimental and calculated substituent-induced chemical shifts for two tautomeric forms of 5-substituted creatinines indicate that the mechanism of the substituent influence in both tautomers for the investigated compounds appears to be analogous. We can predict that in solution this accepting inductive effect of substituent groups does not significantly influence the structure of creatinine molecule in solution. The analysis of coupling constants for 5-substituted creatinines gives information about conformation of the investigated molecules in solution.


Subject(s)
Creatinine/analogs & derivatives , Creatinine/chemistry , Magnetic Resonance Spectroscopy , Models, Chemical , Carbon Isotopes/chemistry , Protons
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 67(2): 298-305, 2007 Jun.
Article in English | MEDLINE | ID: mdl-16997619

ABSTRACT

Methylcitric acid (MCA) was synthesised in Reformatsky reaction (2RS, 3RS stereoisomers) and in the nucleophilic addition (2RS, 3SR stereoisomers). The stereoselectivity of these reactions was analysed. (1)H and (13)C NMR spectra of diastereoisomers of methylcitric acid were recorded and interpreted. The values of (1)H chemical shifts and (1)H-(1)H coupling constants were analysed. Proton-decoupled high-resolution (13)C NMR spectra of MCA diastereoisomers were measured in a series of dilute water solutions of various acidities. These data may provide a basis for unequivocal determination of the presence of MCA in the urine samples of patients' suffering from propionic acidemia, methylmalonic aciduria, or holocarboxylase synthetase deficiency. NMR spectroscopy enables determination of MCA diastereoisomers in body fluids and can be a complementary and useful diagnostic tool.


Subject(s)
Citrates/chemistry , Body Fluids/chemistry , Carbon Isotopes/analysis , Citrates/analysis , Citrates/chemical synthesis , Humans , Magnetic Resonance Spectroscopy , Protons , Stereoisomerism
20.
J Pharm Biomed Anal ; 31(3): 455-63, 2003 Mar 10.
Article in English | MEDLINE | ID: mdl-12615232

ABSTRACT

1H and 13C NMR spectra of N-acetylaspartylglutamate (NAAG) have been recorded and interpreted. The values of the 1H chemical shifts and 1H-(1)H coupling constants at different pH were obtained by iterative computer fitting of 1-D 1H NMR spectra. This provided information on the solution conformation of the investigated molecule. Proton-decoupled high resolution 13C NMR spectra of NAAG have been measured in a series of dilute water solution of various acidity. These data have provided a basis for unequivocal determination of the presence of NAAG in the urine sample of a patient suffering from Canavan disease. NMR spectroscopy provides a possibility of detecting NAAG in body fluids.


Subject(s)
Canavan Disease/urine , Dipeptides/analysis , Dipeptides/urine , Child , Humans , Hydrogen-Ion Concentration , Indicators and Reagents , Magnetic Resonance Spectroscopy , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...