Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Synchrotron Radiat ; 28(Pt 2): 429-438, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33650554

ABSTRACT

The design and implementation of new beamlines featuring side-bounce (single-reflection) diamond monochromators at Cornell High Energy Synchrotron Source (CHESS) are described. Undulator radiation is monochromated using an interchangeable set of diamond crystal plates reflecting radiation in the horizontal (synchrotron) plane, where each crystal plate is set to one of the low-index Bragg reflections (111, 220, 311 and 400) in either Bragg or Laue reflection geometries. At the nominal Bragg angle of 18° these reflections deliver monochromated X-rays with photon energies of 9.7, 15.9, 18.65 and 22.5 keV, respectively. An X-ray mirror downstream of the diamond monochromator is used for rejection of higher radiation harmonics and for initial focusing of the monochromated beam. The characteristics of the X-ray beam entering the experimental station were measured experimentally and compared with the results of simulations. A reasonable agreement is demonstrated. It is shown that the use of selected high-dislocation-density `mosaic' diamond single-crystal plates produced using the chemical vapor deposition method yields a few-fold enhancement in the flux density of the monochromated beam in comparison with that delivered by perfect crystals under the same conditions. At present, the Functional Materials Beamline at CHESS, which is used for time-resolved in situ characterization of soft materials during processing, has been outfitted with the described setup.

2.
Rev Sci Instrum ; 84(5): 053109, 2013 May.
Article in English | MEDLINE | ID: mdl-23742534

ABSTRACT

We have created and tested a compact integrated X-ray beam intensity and position monitor using Ar-gas scintillation. The light generated inside the device's cavity is detected by diametrically opposed PIN diodes located above and below the beam. The intensity is derived from the sum of the top and bottom signals, while the beam position is calculated from the difference-over-sum of the two signals. The device was tested at Cornell High Energy Synchrotron Source with both 17 keV and 59 keV x-rays. For intensity monitoring, the Ar-scintillation monitor performance is comparable to standard ion chambers in terms of precision. As an X-ray beam position monitor the new device response is linear with vertical beam position over a 2 mm span with a precision of 2 µm.


Subject(s)
Noble Gases , Scintillation Counting/instrumentation , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...