Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 398: 111082, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825055

ABSTRACT

The study investigates the effect of the presence of a chlorine atom in the 2'-hydroxychalcone molecule on its interaction with model lipid membranes, in order to discern its potential pharmacological activity. Five chlorine derivatives of 2'-hydroxychalcone were synthesized and evaluated against liposomes composed of POPC and enriched with cationic (DOTAP) or anionic (POPG) lipids. The physicochemical properties of the compounds were initially simulated using SwissAdame software, revealing high lipophilicity (ilogP values: 2.79-2.90). The dynamic light scattering analysis of liposomes showed that chloro chalcones induce minor changes in the diameter of liposomes of different surface charges. Fluorescence quenching assays with a TMA-DPH probe demonstrated the strong ability of the compounds to interact with the lipid bilayer, with varying quenching capacities based on chlorine atom position. FTIR studies indicated alterations in carbonyl, phosphate, and choline groups, suggesting a transition area localization rather than deep penetration into the hydrocarbon chains. Additionally, dipole potential reduction was observed in POPC and POPC-POPG membranes, particularly pronounced by derivatives with a chlorine atom in the B ring. Antibacterial and antibiofilm assays revealed enhanced activity of derivatives with a chlorine atom compared to 2'-hydroxychalcone, especially against Gram-positive bacteria. The MIC and MBIC50 values showed increased efficacy in the presence of chlorine with 3'-5'-dichloro-2'-hydroxychalcone demonstrating optimal antimicrobial and antibiofilm activity. Furthermore, antiproliferative assays against breast cancer cell lines indicated higher activity of B-ring chlorine derivatives, particularly against MDA-MB-231 cells. In general, the presence of a chlorine atom in 2'-hydroxychalcone improves its pharmacological potential, with derivatives showing improved antimicrobial, antibiofilm, and antiproliferative activities, especially against aggressive breast cancer cell lines. These findings underscore the importance of molecular structure in modulating biological activity and highlight chalcones with a chlorine as promising candidates for further drug development studies.

2.
Sci Rep ; 14(1): 10561, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719884

ABSTRACT

This study focuses on understanding the structural and molecular changes in lipid membranes under the influence of six halogenated flavonoid derivatives differing in the number and position of substitution of chlorine and bromine atoms (D1-D6). Utilizing various analytical techniques, including fluorometric methods, dynamic light scattering (DLS), attenuated Fourier transform infrared spectroscopy (ATR- FTIR), and FT-Raman spectroscopy, the research aims to elucidate the mechanisms underlying the interaction of flavonoids with cell membranes. Additionally, the study includes in silico analyses to explore the physicochemical properties of these compounds and their potential pharmaceutical applications, along with toxicity studies to assess their effects on cancer, normal, and red blood cells. Our study showed the ability of halogenated derivatives to interact mostly with the outer part of the membrane, especially in the lipid heads region however, some of them were able to penetrate deeper into the membrane and affect the fluidity of hydrocarbon chains. The potential to reduce cancer cell viability, the lack of toxicity towards erythrocytes, and the favourable physicochemical and pharmacokinetic properties suggest these halogenated flavonoids potential candidates for exploring their potential for medical use.


Subject(s)
Flavonoids , Membrane Lipids , Flavonoids/chemistry , Flavonoids/pharmacology , Flavonoids/metabolism , Humans , Membrane Lipids/metabolism , Membrane Lipids/chemistry , Cell Membrane/metabolism , Halogenation , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Cell Survival/drug effects , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor
3.
Molecules ; 29(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38792101

ABSTRACT

Chemokines, also known as chemotactic cytokines, stimulate the migration of immune cells. These molecules play a key role in the pathogenesis of inflammation leading to atherosclerosis, neurodegenerative disorders, rheumatoid arthritis, insulin-resistant diabetes, and cancer. Moreover, they take part in inflammatory bowel disease (IBD). The main objective of our research was to determine the activity of methyl-derivatives of flavanone, namely, 2'-methylflavanone (5B), 3'-methylflavanone (6B), 4'-methylflavanone (7B), and 6-methylflavanone (8B), on the releasing of selected cytokines by RAW264.7 macrophages activated by LPS. We determined the concentration of chemokines belonging to the CC chemokine family, namely, MCP-1, MIP-1ß, RANTES, and eotaxin, using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. Among the tested compounds, only 5B and 6B had the strongest effect on inhibiting the examined chemokines' release by macrophages. Therefore, 5B and 6B appear to be potentially useful in the prevention of diseases associated with the inflammatory process.


Subject(s)
Chemokine CCL11 , Chemokine CCL2 , Chemokine CCL5 , Flavanones , Macrophages , Animals , Mice , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Flavanones/pharmacology , Flavanones/chemistry , Chemokine CCL11/metabolism , Chemokine CCL2/metabolism , Chemokine CCL5/metabolism , Chemokine CCL4/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects
4.
Molecules ; 28(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38067567

ABSTRACT

Inflammation plays an important role in the immune defense against injury and infection agents. However, the inflammatory chronic process may lead to neurodegenerative diseases, atherosclerosis, inflammatory bowel diseases, or cancer. Flavanones present in citrus fruits exhibit biological activities, including anti-oxidative and anti-inflammatory properties. The beneficial effects of flavanones have been found based on in vitro cell cultures and animal studies. A suitable in vitro model for studying the inflammatory process are macrophages (RAW264.7 cell line) because, after stimulation using lipopolysaccharide (LPS), they release inflammatory cytokines involved in the immune response. We determined the nitrite concentration in the macrophage cell culture and detected ROS using chemiluminescence. Additionally, we measured the production of selected cytokines using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. For the first time, we have shown that methyl derivatives of flavanone inhibit NO and chemiluminescence generated via LPS-stimulated macrophages. Moreover, the tested compounds at 1-20 µM dose-dependently modulate proinflammatory cytokine production (IL-1ß, IL-6, IL-12p40, IL-12p70, and TNF-α) in stimulated RAW264.7 cells. The 2'-methylflavanone (5B) and the 3'-methylflavanone (6B) possess the strongest anti-inflammatory activity among all the tested flavanone derivatives. These compounds reduce the concentration of IL-6, IL-12p40, and IL12p70 compared to the core flavanone structure. Moreover, 2'-methylflavanone reduces TNF-α, and 3'-methylflavanone reduces IL-1ß secreted by RAW264.7 cells.


Subject(s)
Flavanones , Tumor Necrosis Factor-alpha , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-12 Subunit p40 , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Flavanones/pharmacology , Flavanones/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Nitric Oxide/metabolism
5.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298456

ABSTRACT

Combining chemical and microbiological methods using entomopathogenic filamentous fungi makes obtaining flavonoid glycosides possible. In the presented study, biotransformations were carried out in cultures of Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2, and Isaria farinosa KCH J2.6 strains on six flavonoid compounds obtained in chemical synthesis. As a result of the biotransformation of 6-methyl-8-nitroflavanone using the strain I. fumosorosea KCH J2, two products were obtained: 6-methyl-8-nitro-2-phenylchromane 4-O-ß-D-(4″-O-methyl)-glucopyranoside and 8-nitroflavan-4-ol 6-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside. 8-Bromo-6-chloroflavanone was transformed by this strain to 8-bromo-6-chloroflavan-4-ol 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. As a result of microbial transformation by I. farinosa KCH J2.6 effectively biotransformed only 8-bromo-6-chloroflavone into 8-bromo-6-chloroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside. B. bassiana KCH J1.5 was able to transform 6-methyl-8-nitroflavone to 6-methyl-8-nitroflavone 4'-O-ß-D-(4″-O-methyl)-glucopyranoside, and 3'-bromo-5'-chloro-2'-hydroxychalcone to 8-bromo-6-chloroflavanone 3'-O-ß-D-(4″-O-methyl)-glucopyranoside. None of the filamentous fungi used transformed 2'-hydroxy-5'-methyl-3'-nitrochalcone effectively. Obtained flavonoid derivatives could be used to fight against antibiotic-resistant bacteria. To the best of our knowledge, all the substrates and products presented in this work are new compounds and are described for the first time.


Subject(s)
Flavonoids , Nitrogen Dioxide , Flavonoids/chemistry , Fungi/metabolism , Glycosides/metabolism , Biotransformation
6.
Membranes (Basel) ; 12(10)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36295737

ABSTRACT

Flavonoids were biotransformed using various microorganisms, in order to obtain new compounds with potentially high biological activity. The aim of this work was to determine and compare the biological activity of four novel 6-methylflavanone O-methylglucosides. The tested compounds have the same flavonoid core structure and an attached O-methylglucose and hydroxyl group at different positions of ring A or B. The studies on their biological activity were conducted in relation to phosphatidylcholine membrane, erythrocytes and their membrane, and with human transferrin. These studies determined the compounds' toxicity and their impact on the physical properties of the membranes. Furthermore, the binding ability of the compounds to holo-transferrin was investigated. The obtained results indicate that used compounds bind to erythrocytes, change their shape and decrease osmotic fragility but do not disrupt the membrane structure. Furthermore, the used compounds ordered the area of the polar heads of lipids and increased membrane fluidity. However, the results indicate the binding of these compounds in the hydrophilic region of the membranes, like other flavonoid glycosides. The used flavanones formed complexes with transferrin without inducing conformational changes in the protein's structure. The relationship between their molecular structure and biological activity was discussed.

7.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628367

ABSTRACT

Flavonoid compounds are secondary plant metabolites with numerous biological activities; they naturally occur mainly in the form of glycosides. The glucosyl moiety attached to the flavonoid core makes them more stable and water-soluble. The methyl derivatives of flavonoids also show increased stability and intestinal absorption. Our study showed that such flavonoids can be obtained by combined chemical and biotechnological methods with entomopathogenic filamentous fungi as glycosylation biocatalysts. In the current paper, two flavonoids, i.e., 2'-hydroxy-4-methylchalcone and 4'-methylflavone, have been synthesized and biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Isaria fumosorosea KCH J2 and Beauveria bassiana KCH J1.5. Biotransformation of 2'-hydroxy-4-methylchalcone resulted in the formation of two dihydrochalcone glucopyranoside derivatives in the culture of I. fumosorosea KCH J2 and chalcone glucopyranoside derivative in the case of B. bassiana KCH J1.5. 4'-Methylflavone was transformed in the culture of I. fumosorosea KCH J2 into four products, i.e., 4'-hydroxymethylflavone, flavone 4'-methylene-O-ß-d-(4″-O-methyl)-glucopyranoside, flavone 4'-carboxylic acid, and 4'-methylflavone 3-O-ß-d-(4″-O-methyl)-glucopyranoside. 4'-Methylflavone was not efficiently biotransformed in the culture of B. bassiana KCH J1.5. The computer-aided simulations based on the chemical structures of the obtained compounds showed their improved physicochemical properties and antimicrobial, anticarcinogenic, hepatoprotective, and cardioprotective potential.


Subject(s)
Flavones , Biotransformation , Flavones/metabolism , Flavonoids/chemistry , Glycosides , Glycosylation
8.
Int J Mol Sci ; 23(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628179

ABSTRACT

Flavonoid compounds exhibit numerous biological activities and significantly impact human health. The presence of methyl or glucosyl moieties attached to the flavonoid core remarkably modifies their physicochemical properties and improves intestinal absorption. Combined chemical and biotechnological methods can be applied to obtain such derivatives. In the presented study, 4'-methylflavanone was synthesized and biotransformed in the cultures of three strains of entomopathogenic filamentous fungi, i.e., Isaria fumosorosea KCH J2, Beauveria bassiana KCH J1.5, and Isaria farinosa KCH J2.1. The microbial transformation products in the culture of I. fumosorosea KCH J2, flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside, 2-phenyl-(4'-hydroxymethyl)-4-hydroxychromane, and flavanone 4'-carboxylic acid were obtained. Biotransformation of 4'-methylflavanone in the culture of B. bassiana KCH J1.5 resulted in the formation of one main product, i.e., flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside. In the case of I. farinosa KCH J2.6 as a biocatalyst, three products, i.e., flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside, flavanone 4'-carboxylic acid, and 4'-hydroxymethylflavanone 4-O-ß-D-(4″-O-methyl)-glucopyranoside were obtained. The Swiss-ADME online simulations confirmed the increase in water solubility of 4'-methylflavanone glycosides and analyses performed using the Way2Drug Pass Online prediction tool indicated that flavanone 4'-methylene-O-ß-D-(4″-O-methyl)-glucopyranoside and 4'-hydroxymethylflavanone 4-O-ß-D-(4″-O-methyl)-glucopyranoside, which had not been previously reported in the literature, are promising anticarcinogenic, antimicrobial, and hepatoprotective agents.


Subject(s)
Anti-Infective Agents , Flavanones , Anti-Bacterial Agents , Biotransformation , Carboxylic Acids , Flavanones/pharmacology , Flavonoids/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Humans
9.
Int J Mol Sci ; 22(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502526

ABSTRACT

Methylated flavonoids are promising pharmaceutical agents due to their improved metabolic stability and increased activity compared to unmethylated forms. The biotransformation in cultures of entomopathogenic filamentous fungi is a valuable method to obtain glycosylated flavones and flavanones with increased aqueous solubility and bioavailability. In the present study, we combined chemical synthesis and biotransformation to obtain methylated and glycosylated flavonoid derivatives. In the first step, we synthesized 2'-methylflavanone and 2'-methylflavone. Afterwards, both compounds were biotransformed in the cultures of two strains of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5 and Isaria fumosorosea KCH J2. We determined the structures of biotransformation products based on NMR spectroscopy. Biotransformations of 2'-methyflavanone in the culture of B. bassiana KCH J1.5 resulted in three glycosylated flavanones: 2'-methylflavanone 6-O-ß-d-(4″-O-methyl)-glucopyranoside, 3'-hydroxy-2'-methylflavanone 6-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2-(2'-methylphenyl)-chromane 4-O-ß-d-(4″-O-methyl)-glucopyranoside, whereas in the culture of I. fumosorosea KCH J2, two other products were obtained: 2'-methylflavanone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside and 2-methylbenzoic acid 4-O-ß-d-(4'-O-methyl)-glucopyranoside. 2'-Methylflavone was effectively biotransformed only by I. fumosorosea KCH J2 into three derivatives: 2'-methylflavone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2'-methylflavone 4'-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2'-methylflavone 5'-O-ß-d-(4″-O-methyl)-glucopyranoside. All obtained glycosylated flavonoids have not been described in the literature until now and need further research on their biological activity and pharmacological efficacy as potential drugs.


Subject(s)
Beauveria/metabolism , Cordyceps/metabolism , Flavanones/metabolism , Flavones/metabolism , Biotransformation
10.
Int J Mol Sci ; 22(17)2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34502528

ABSTRACT

Flavonoids, including chalcones, are more stable and bioavailable in the form of glycosylated and methylated derivatives. The combined chemical and biotechnological methods can be applied to obtain such compounds. In the present study, 2'-hydroxy-2-methylchalcone was synthesized and biotransformed in the cultures of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2 and Isaria farinosa KCH J2.6, which have been known for their extensive enzymatic system and ability to perform glycosylation of flavonoids. As a result, five new glycosylated dihydrochalcones were obtained. Biotransformation of 2'-hydroxy-2-methylchalcone by B. bassiana KCH J1.5 resulted in four glycosylated dihydrochalcones: 2'-hydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, 2'-hydroxy-2-hydroxymethyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside, and 2',4-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside. In the culture of I. fumosorosea KCH J2 only one product was formed-3-hydroxy-2-methyldihydrochalcone 2'-O-ß-d-(4″-O-methyl)-glucopyranoside. Biotransformation performed by I. farinosa KCH J2.6 resulted in the formation of two products: 2'-hydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside and 2',3-dihydroxy-2-methyldihydrochalcone 3'-O-ß-d-(4″-O-methyl)-glucopyranoside. The structures of all obtained products were established based on the NMR spectroscopy. All products mentioned above may be used in further studies as potentially bioactive compounds with improved stability and bioavailability. These compounds can be considered as flavor enhancers and potential sweeteners.


Subject(s)
Beauveria/metabolism , Chalcones/biosynthesis , Cordyceps/metabolism , Biotransformation , Glycosylation
11.
Sci Rep ; 11(1): 16003, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362978

ABSTRACT

The aim of the study was to compare the impact of three synthesized chemical compounds from a group of methylated flavonoids, i.e. 2'-hydroxy-4-methylchalcone (3), 4'-methylflavanone (4), and 4'-methylflavone (5), on a red blood cell membranes (RBCMs), phosphatidylcholine model membranes (PC), and human serum albumin (HSA) in order to investigate their structure-activity relationships. In the first stage of the study, it was proved that all of the compounds tested do not cause hemolysis of red blood cells and, therefore, do not have a toxic effect. In biophysical studies, it was shown that flavonoids have an impact on the hydrophilic and hydrophobic regions of membranes (both RBCMs and PC) causing an increase in packing order of lipid heads and a decrease in fluidity, respectively. Whereas, on the one hand, the magnitude of these changes depends on the type of the compound tested, on the other hand, it also depends on the type of membrane. 4'-Methylflavanone and 4'-methylflavone are located mainly in the hydrophilic part of lipid membranes, while 2'-hydroxy-4-methylchalcone has a greater impact on the hydrophobic area. A fluorescence quenching study proved that compounds (3), (4) and (5) bind with HSA in a process of static quenching. The binding process is spontaneous whereas hydrogen bonding interactions and van der Waals forces play a major role in the interaction between the compounds and HSA.


Subject(s)
Cell Membrane/metabolism , Erythrocytes/metabolism , Flavonoids/chemistry , Flavonoids/metabolism , Liposomes/metabolism , Serum Albumin, Human/metabolism , Animals , Flavonoids/classification , Hemolysis , Humans , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...