Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 11(12): 3338-3346, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27712055

ABSTRACT

Protein kinases are known for their highly conserved adenosine triphosphate (ATP)-binding site, rendering the discovery of selective inhibitors a major challenge. In theory, allosteric inhibitors can achieve high selectivity by targeting less conserved regions of the kinases, often with an added benefit of retaining efficacy under high physiological ATP concentration. Although often overlooked in favor of ATP-site directed approaches, performing a screen at high ATP concentration or stringent hit triaging with high ATP concentration offers conceptually simple methods of identifying inhibitors that bind outside the ATP pocket. Here, we applied the latter approach to the With-No-Lysine (K) (WNK) kinases to discover lead molecules for a next-generation antihypertensive that requires a stringent safety profile. This strategy yielded several ATP noncompetitive WNK1-4 kinase inhibitors, the optimization of which enabled cocrystallization with WNK1, revealing an allosteric binding mode consistent with the observed exquisite specificity for WNK1-4 kinases. The optimized compound inhibited rubidium uptake by sodium chloride cotransporter 1 (NKCC1) in HT29 cells, consistent with the reported physiology of WNK kinases in renal electrolyte handling.


Subject(s)
Allosteric Regulation/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Drug Discovery , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Minor Histocompatibility Antigens/chemistry , Minor Histocompatibility Antigens/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 2/metabolism , WNK Lysine-Deficient Protein Kinase 1
2.
Anal Biochem ; 446: 1-8, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24121012

ABSTRACT

Effective drug discovery demands the availability of microgram to gram quantities of high-quality protein encoded by novel transcripts. Protein expression vectors designed for large-scale protein production often include one or more specific tags to such transcripts, to simplify the purification of the targeted protein. Optimization of the complex expression and purification process requires the evaluation of multiple expression candidate clones to identify a production-suitable construct in terms of quality and final protein yield. Efficiency of the entire expression screening process is typically assessed by direct visualization of the banding patterns from whole-cell lysates on SDS-PAGE gels, by direct staining and/or immunoblotting, using antibodies against the tag or the protein of interest. These techniques, generally run under denaturing conditions, have proven to be only marginally predictive of the purification yield and authentic folding for native proteins. Small-scale, multiparallel affinity purification followed by SDS-PAGE analysis is more predictive for expression screening; however, this approach is labor intensive and time consuming. Here we describe the development of an alternative expression efficiency assessment technique, designed to evaluate the accessibility of affinity tags expressed with the desired fusion proteins, using acoustic membrane microparticle assay technology on the ViBE protein analysis workstation.


Subject(s)
Immunoassay/methods , Recombinant Fusion Proteins/analysis , Animals , Cloning, Molecular , Escherichia coli/genetics , Histidine , Indicators and Reagents/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Sf9 Cells , Spodoptera
SELECTION OF CITATIONS
SEARCH DETAIL
...