Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Development ; 149(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35877077

ABSTRACT

The mammalian kidney is composed of thousands of nephrons that are formed through reiterative induction of a mesenchymal-to-epithelial transformation by a population of nephron progenitor cells. The number of nephrons in human kidneys ranges from several hundred thousand to nearly a million, and low nephron number has been implicated as a risk factor for kidney disease as an adult. Bmp7 is among a small number of growth factors required to support the proliferation and self-renewal of nephron progenitor cells, in a process that will largely determine the final nephron number. Once induced, each nephron begins as a simple tubule that undergoes extensive proliferation and segmental differentiation. Bmp7 is expressed both by nephron progenitor cells and the ureteric bud derivative branches that induce new nephrons. Here, we show that, in mice, Bmp7 expressed by progenitor cells has a major role in determining nephron number; nephron number is reduced to one tenth its normal value in its absence. Postnatally, Bmp7 also drives proliferation of the proximal tubule cells, and these ultimately constitute the largest segment of the nephron. Bmp7 appears to act through Smad 1,5,9(8), p38 and JNK MAP kinase. In the absence of Bmp7, nephrons undergo a hypertrophic process that involves p38. Following a global inactivation of Bmp7, we also see evidence for Bmp7-driven growth of the nephron postnatally. Thus, we identify a role for Bmp7 in supporting the progenitor population and driving expansion of nephrons to produce a mature kidney.


Subject(s)
Bone Morphogenetic Protein 7/metabolism , Kidney , Nephrons , Animals , Cell Differentiation , Humans , Kidney Tubules, Proximal , Mammals , Mice , Nephrons/metabolism , Stem Cells
2.
J Clin Invest ; 132(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35166232

ABSTRACT

Kidney function decreases with age and may soon limit millions of lives as the proportion of the population over 70 years of age increases. Glycogen synthase kinase 3ß (GSK3ß) is involved with metabolism and may have a role in kidney senescence, positioning it as a target for complications from chronic kidney disease. However, different studies suggest GSK3 has contrasting effects. In this issue of the JCI, Fang et al. explored the function of GSK3ß and the interplay with lithium using human tissue and mouse models. Notably, GSK3ß was overexpressed and activated in aging mice, and depleting GSK3ß reduced senescence and glomerular aging. In this Commentary, we explore the similarities and differences between Fang et al. and previous findings by Hurcombe et al. These findings should prompt further study of lithium and other GSK3ß inhibitors as a means of extending glomerular function in individuals with chronic kidney disease.


Subject(s)
Glycogen Synthase Kinase 3 , Kidney , Aging , Animals , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Kidney Glomerulus/metabolism , Mice
3.
Sci Adv ; 6(30): eabb5460, 2020 07.
Article in English | MEDLINE | ID: mdl-32754639

ABSTRACT

In the context of human disease, the mechanisms whereby transcription factors reprogram gene expression in reparative responses to injury are not well understood. We have studied the mechanisms of transcriptional reprogramming in disease using murine kidney podocytes as a model for tissue injury. Podocytes are a crucial component of glomeruli, the filtration units of each nephron. Podocyte injury is the initial event in many processes that lead to end-stage kidney disease. Wilms tumor-1 (WT1) is a master regulator of gene expression in podocytes, binding nearly all genes known to be crucial for maintenance of the glomerular filtration barrier. Using murine models and human kidney organoids, we investigated WT1-mediated transcriptional reprogramming during the course of podocyte injury. Reprogramming the transcriptome involved highly dynamic changes in the binding of WT1 to target genes during a reparative injury response, affecting chromatin state and expression levels of target genes.


Subject(s)
Podocytes , Animals , Epigenesis, Genetic , Humans , Kidney/metabolism , Mice , Podocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism
4.
Development ; 145(14)2018 07 18.
Article in English | MEDLINE | ID: mdl-29945864

ABSTRACT

Epigenetic regulation of gene expression has a crucial role allowing for the self-renewal and differentiation of stem and progenitor populations during organogenesis. The mammalian kidney maintains a population of self-renewing stem cells that differentiate to give rise to thousands of nephrons, which are the functional units that carry out filtration to maintain physiological homeostasis. The polycomb repressive complex 2 (PRC2) epigenetically represses gene expression during development by placing the H3K27me3 mark on histone H3 at promoter and enhancer sites, resulting in gene silencing. To understand the role of PRC2 in nephron differentiation, we conditionally inactivated the Eed gene, which encodes a nonredundant component of the PRC2 complex, in nephron progenitor cells. Resultant kidneys were smaller and showed premature loss of progenitor cells. The progenitors in Eed mutant mice that were induced to differentiate did not develop into properly formed nephrons. Lhx1, normally expressed in the renal vesicle, was overexpressed in kidneys of Eed mutant mice. Thus, PRC2 has a crucial role in suppressing the expression of genes that maintain the progenitor state, allowing nephron differentiation to proceed.


Subject(s)
Cell Differentiation/physiology , Epigenesis, Genetic/physiology , Gene Expression Regulation, Developmental/physiology , Nephrons/embryology , Polycomb Repressive Complex 2/biosynthesis , Stem Cells/metabolism , Animals , LIM-Homeodomain Proteins/biosynthesis , LIM-Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Mutation , Nephrons/cytology , Polycomb Repressive Complex 2/genetics , Stem Cells/cytology , Transcription Factors/biosynthesis , Transcription Factors/genetics
5.
Am J Pathol ; 188(1): 84-94, 2018 01.
Article in English | MEDLINE | ID: mdl-29107072

ABSTRACT

Ectopic cAMP signaling is pathologic in polycystic kidney disease; however, its spatiotemporal actions are unclear. We characterized the expression of phosphorylated Creb (p-Creb), a target and mediator of cAMP signaling, in developing and cystic kidney models. We also examined tubule-specific effects of cAMP analogs in cystogenesis in embryonic kidney explants. In wild-type mice, p-Creb marked nephron progenitors (NP), early epithelial NP derivatives, ureteric bud, and cortical stroma; p-Creb was present in differentiated thick ascending limb of Henle, collecting duct, and stroma; however, it disappeared in mature NP-derived proximal tubules. In Six2cre;Frs2αFl/Fl mice, a renal cystic model, ectopic p-Creb stained proximal tubule-derived cystic segments that lost the differentiation marker lotus tetragonolobus lectin. Furthermore, lotus tetragonolobus lectin-negative/p-Creb-positive cyst segments (re)-expressed Ncam1, Pax2, and Sox9 markers of immature nephron structures and dedifferentiated proximal tubules after acute kidney injury. These dedifferentiation markers were co-expressed with p-Creb in renal cysts in Itf88 knockout mice subjected to ischemia and Six2cre;Pkd1Fl/Fl mice, other renal cystogenesis models. 8-Br-cAMP addition to wild-type embryonic kidney explants induced proximal tubular cystogenesis and p-Creb expression; these effects were blocked by co-addition of protein kinase A inhibitor. Thus p-Creb/cAMP signaling is appropriate in NP and early nephron derivatives, but disappears in mature proximal tubules. Moreover, ectopic p-Creb expression/cAMP signaling marks dedifferentiated proximal tubular cystic segments. Furthermore, proximal tubules are predisposed to become cystic after cAMP stimulation.


Subject(s)
Cell Dedifferentiation/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Kidney Diseases, Cystic/metabolism , Kidney Tubules, Proximal/metabolism , Animals , Disease Models, Animal , Kidney Diseases, Cystic/pathology , Kidney Tubules, Proximal/pathology , Mice , Mice, Knockout , Phosphorylation
6.
Development ; 142(7): 1254-66, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25804736

ABSTRACT

Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1.


Subject(s)
Cell Cycle Proteins/metabolism , Fibroblast Growth Factors/metabolism , Nephrons/metabolism , Signal Transduction , Stem Cells/metabolism , WT1 Proteins/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Proliferation , DNA/genetics , Enzyme Activation/drug effects , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Mice, Knockout , Models, Animal , Nephrons/abnormalities , Nephrons/embryology , Nephrons/pathology , Organ Culture Techniques , Promoter Regions, Genetic/genetics , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
7.
J Am Soc Nephrol ; 26(9): 2097-104, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25636411

ABSTRACT

The transcription factor Wilms' tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay.


Subject(s)
Gene Expression Regulation , Podocytes , Repressor Proteins/genetics , Signal Transduction/genetics , Transcriptome , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Chromatin Immunoprecipitation , Forkhead Transcription Factors/genetics , Genomics , Hippo Signaling Pathway , LIM-Homeodomain Proteins/genetics , MafB Transcription Factor/genetics , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sequence Analysis, DNA , Sequence Analysis, RNA , Transcription Factors/genetics , WT1 Proteins
8.
J Proteome Res ; 13(11): 4901-9, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25300029

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder caused by mutations in the Pkd1 or Pkd2 genes, in which large cysts replace normal kidney tissue, leading to end-stage kidney disease. In this study we have utilized a powerful nano-HPLC-mass spectrometric approach to characterize patterns of normal and abnormal N-linked glycosylation of α3 integrin subunit in Pkd1(-/-) cells derived from mouse kidneys. Higher molecular weight glycan structures with a different monosaccharide composition were observed at two sites, namely, Asn-925 and Asn-928 sites in α3 integrin isolated from Pkd1(+/+) cells compared with Pkd1(-/-) cells. In addition, an unusual and unique disialic acid glycan structure was observed solely in Pkd1(-/-) cells. Thus, these studies suggest that abnormal protein glycosylation may have a role on the pathogenesis of cyst formation in ADPKD.


Subject(s)
Integrin alpha3/metabolism , Polycystic Kidney Diseases/metabolism , Polysaccharides/metabolism , Animals , Chromatography, High Pressure Liquid , Immunoprecipitation , Mass Spectrometry , Mice , Mice, Knockout , Polycystic Kidney Diseases/pathology , Polysaccharides/isolation & purification , Sialic Acids/metabolism , TRPP Cation Channels/genetics
9.
Am J Physiol Renal Physiol ; 306(7): F764-72, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24500693

ABSTRACT

MicroRNAs (miRNAs) are small, noncoding regulatory RNAs that act as posttranscriptional repressors by binding to the 3'-untranslated region (3'-UTR) of target genes. They require processing by Dicer, an RNase III enzyme, to become mature regulatory RNAs. Previous work from our laboratory revealed critical roles for miRNAs in nephron progenitors at midgestation (Ho J, Pandey P, Schatton T, Sims-Lucas S, Khalid M, Frank MH, Hartwig S, Kreidberg JA. J Am Soc Nephrol 22: 1053-1063, 2011). To interrogate roles for miRNAs in the early metanephric mesenchyme, which gives rise to nephron progenitors as well as the renal stroma during kidney development, we conditionally ablated Dicer function in this lineage. Despite normal ureteric bud outgrowth and condensation of the metanephric mesenchyme to form nephron progenitors, early loss of miRNAs in the metanephric mesenchyme resulted in severe renal dysgenesis. Nephron progenitors are initially correctly specified in the mutant kidneys, with normal expression of several transcription factors known to be critical in progenitors, including Six2, Pax2, Sall1, and Wt1. However, there is premature loss of the nephron progenitor marker Cited1, marked apoptosis, and increased expression of the proapoptotic protein Bim shortly after the initial inductive events in early kidney development. Subsequently, there is a failure in ureteric bud branching and nephron progenitor differentiation. Taken together, our data demonstrate a previously undetermined requirement for miRNAs during early kidney organogenesis and indicate a crucial role for miRNAs in regulating the survival of this lineage.


Subject(s)
DEAD-box RNA Helicases/metabolism , Embryonic Stem Cells/enzymology , Kidney/enzymology , Mesoderm/enzymology , Ribonuclease III/metabolism , Animals , Apoptosis , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , DEAD-box RNA Helicases/deficiency , DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gestational Age , Kidney/abnormalities , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mesoderm/abnormalities , Mice , Mice, Knockout , MicroRNAs/metabolism , Nephrons/abnormalities , Nephrons/enzymology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Organogenesis , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Ribonuclease III/deficiency , Ribonuclease III/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Ureter/abnormalities , Ureter/enzymology
10.
Pediatr Nephrol ; 28(2): 219-25, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22660936

ABSTRACT

The discovery of microRNAs (miRNAs) as novel regulators of gene expression has led to a marked change in how gene regulation is viewed, with important implications for development and disease. MiRNAs are endogenous, small, noncoding RNAs that largely repress their target mRNAs post-transcriptionally. The regulation of gene expression by miRNAs represents an evolutionarily conserved mechanism that is broadly applicable to most biological processes. Recent studies have begun to define the role of miRNAs in different cell lineages during kidney development, and to implicate specific miRNAs in developmental and pathophysiological processes in the kidney. This review will focus on novel insights into the role(s) of miRNAs in kidney development, and discuss the implications for pediatric renal disease.


Subject(s)
Kidney Diseases/genetics , Kidney/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation , Humans , Kidney/embryology
11.
Biochem Biophys Res Commun ; 425(2): 244-9, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22828505

ABSTRACT

Agents that target the activity of the mammalian target of rapamycin (mTOR) kinase in humans are associated with proteinuria. However, the mechanisms underlying mTOR activity and signaling within the kidney are poorly understood. In this study, we developed a sensitive immunofluorescence technique for the evaluation of activated pmTOR and its associated signals in situ. While we find that pmTOR is rarely expressed in normal non-renal tissues, we consistently find intense expression in glomeruli within normal mouse and human kidneys. Using double staining, we find that the expression of pmTOR co-localizes with nephrin in podocytes and expression appears minimal within other cell types in the glomerulus. In addition, we found that pmTOR was expressed on occasional renal tubular cells within mouse and human kidney specimens. We also evaluated mTOR signaling in magnetic bead-isolated glomeruli from normal mice and, by Western blot analysis, we confirmed function of the pathway in glomerular cells vs. interstitial cells. Furthermore, we found that the activity of the pathway as well as the expression of VEGF, a target of mTOR-induced signaling, were reduced within glomeruli of mice following treatment with rapamycin. Collectively, these findings demonstrate that the mTOR signaling pathway is constitutively hyperactive within podocytes. We suggest that pmTOR signaling functions to regulate glomerular homeostasis in part via the inducible expression of VEGF.


Subject(s)
Kidney Glomerulus/enzymology , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Fluorescent Antibody Technique , Homeostasis , Humans , Kidney Glomerulus/drug effects , Mechanistic Target of Rapamycin Complex 1 , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Podocytes/enzymology , Signal Transduction , Sirolimus/pharmacology , Vascular Endothelial Growth Factor A/biosynthesis
12.
J Am Soc Nephrol ; 23(8): 1309-18, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22677559

ABSTRACT

The mechanisms of cystogenesis in autosomal dominant polycystic kidney disease (ADPKD) are not fully understood. Hyperactivation of the tyrosine kinase c-Met contributes to cyst formation, but we do not know the downstream mediators. Here, we found that hyperactivated c-Met led to increased NF-κB signaling, which in turn, drove de novo expression of Wnt7a and overexpression of Wnt7b in Pkd1(-/-) mouse kidneys. Hyperactivated Wnt signaling increased expression of the transcription factor Pax2 in the cells lining cysts. Furthermore, blocking Wnt signaling with DKK1 decreased cyst formation in an organ culture model of ADPKD. In summary, these results suggest that the c-Met/NF-κB/Wnt/Pax2 signaling transduction axis may provide pharmacological targets for the treatment of ADPKD.


Subject(s)
NF-kappa B/metabolism , PAX2 Transcription Factor/metabolism , Polycystic Kidney Diseases/metabolism , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , 8-Bromo Cyclic Adenosine Monophosphate , Animals , Female , Male , Mice , Mice, Knockout , Organ Culture Techniques , Polycystic Kidney Diseases/etiology , Pregnancy , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Up-Regulation
13.
J Am Soc Nephrol ; 23(3): 400-4, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22302196

ABSTRACT

MicroRNAs (miRNAs) are a group of small, noncoding RNAs that act as novel regulators of gene expression through the post-transcriptional repression of their target mRNAs. miRNAs have been implicated in diverse biologic processes, and it is estimated that up to half of all transcripts are regulated by miRNAs. Recent studies also demonstrate a critical role for miRNAs in renal development, physiology, and pathophysiology. Understanding the function of miRNAs in the kidney may lead to innovative approaches to renal disease.


Subject(s)
Gene Expression Regulation/physiology , Kidney/physiology , MicroRNAs/physiology , Animals , Disease Models, Animal , Humans , Kidney/embryology , Kidney/physiopathology , Kidney Diseases/physiopathology , Transcription, Genetic/physiology
14.
J Am Soc Nephrol ; 22(7): 1286-96, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21719793

ABSTRACT

Paracrine signaling between podocytes and glomerular endothelial cells through vascular endothelial growth factor A (VEGFA) maintains a functional glomerular filtration barrier. Heparan sulfate proteoglycans (HSPGs), located on the cell surface or in the extracellular matrix, bind signaling molecules such as VEGFA and affect their local concentrations, but whether modulation of these moieties promotes normal crosstalk between podocytes and endothelial cells is unknown. Here, we found that the transcription factor Wilms' Tumor 1 (WT1) modulates VEGFA and FGF2 signaling by increasing the expression of the 6-O-endosulfatases Sulf1 and Sulf2, which remodel the heparan sulfate 6-O-sulfation pattern in the extracellular matrix. Mice deficient in both Sulf1 and Sulf2 developed age-dependent proteinuria as a result of ultrastructural abnormalities in podocytes and endothelial cells, a phenotype similar to that observed in children with WT1 mutations and in Wt1(+/-) mice. These kidney defects associated with a decreased distribution of VEGFA in the glomerular basement membrane and on endothelial cells. Collectively, these data suggest that WT1-dependent sulfatase expression plays a critical role in maintaining the glomerular filtration barrier by modulating the bioavailability of growth factors, thereby promoting normal crosstalk between podocytes and endothelial cells.


Subject(s)
Kidney Glomerulus/enzymology , Sulfatases/metabolism , Sulfotransferases/metabolism , WT1 Proteins/metabolism , Animals , Cell Communication , Fibroblast Growth Factor 2/metabolism , Gene Expression Regulation , Heterozygote , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mutation , Permeability , Promoter Regions, Genetic , Vascular Endothelial Growth Factor A/metabolism
15.
J Am Soc Nephrol ; 22(6): 1053-63, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21546576

ABSTRACT

Understanding the mechanisms that regulate nephron progenitors during kidney development should aid development of therapies for renal failure. MicroRNAs, which modulate gene expression through post-transcriptional repression of specific target mRNAs, contribute to the differentiation of stem cells, but their role in nephrogenesis is incompletely understood. Here, we found that the loss of miRNAs in nephron progenitors results in a premature depletion of this population during kidney development. Increased apoptosis and expression of the pro-apoptotic protein Bim accompanied this depletion. Profiling of miRNA expression during nephrogenesis identified several highly expressed miRNAs (miR-10a, miR-106b, miR-17-5p) in nephron progenitors that are either known or predicted to target Bim. We propose that modulation of apoptosis by miRNAs may determine congenital nephron endowment. Furthermore, our data implicate the pro-apoptotic protein Bim as a miRNA target in nephron progenitors.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Kidney/embryology , Kidney/physiology , Membrane Proteins/physiology , MicroRNAs/physiology , Proto-Oncogene Proteins/physiology , Stem Cells/physiology , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Differentiation/physiology , Cell Proliferation , Female , Gene Expression Profiling , Kidney/cytology , Male , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Mice, Transgenic , Models, Animal , Pregnancy , Proto-Oncogene Proteins/genetics , Stem Cells/cytology
16.
BMC Syst Biol ; 5: 56, 2011 Apr 25.
Article in English | MEDLINE | ID: mdl-21518438

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation throughout the kidney parenchyma. It is caused by mutations in either of two genes, PKD1 and PKD2. Mice that lack functional Pkd1 (Pkd1⁻/⁻), develop rapidly progressive cystic disease during embryogenesis, and serve as a model to study human ADPKD. Genome wide transcriptome reprogramming and the possible roles of micro-RNAs (miRNAs) that affect the initiation and progression of cyst formation in the Pkd1⁻/⁻ have yet to be studied. miRNAs are small, regulatory non-coding RNAs, implicated in a wide spectrum of biological processes. Their expression levels are altered in several diseases including kidney cancer, diabetic nephropathy and PKD. RESULTS: We examined the molecular pathways that modulate renal cyst formation and growth in the Pkd1⁻/⁻ model by performing global gene-expression profiling in embryonic kidneys at days 14.5 and 17.5. Gene Ontology and gene set enrichment analysis were used to identify overrepresented signaling pathways in Pkd1⁻/⁻ kidneys. We found dysregulation of developmental, metabolic, and signaling pathways (e.g. Wnt, calcium, TGF-ß and MAPK) in Pkd1⁻/⁻ kidneys. Using a comparative transcriptomics approach, we determined similarities and differences with human ADPKD: ~50% overlap at the pathway level among the mis-regulated pathways was observed. By using computational approaches (TargetScan, miRanda, microT and miRDB), we then predicted miRNAs that were suggested to target the differentially expressed mRNAs. Differential expressions of 9 candidate miRNAs, miRs-10a, -30a-5p, -96, -126-5p, -182, -200a, -204, -429 and -488, and 16 genes were confirmed by qPCR. In addition, 14 candidate miRNA:mRNA reciprocal interactions were predicted. Several of the highly regulated genes and pathways were predicted as targets of miRNAs. CONCLUSIONS: We have described global transcriptional reprogramming during the progression of PKD in the Pkd1⁻/⁻ model. We propose a model for the cascade of signaling events involved in cyst formation and growth. Our results suggest that several miRNAs may be involved in regulating signaling pathways in ADPKD. We further describe novel putative miRNA:mRNA signatures in ADPKD, which will provide additional insights into the pathogenesis of this common genetic disease in humans.


Subject(s)
Gene Expression Profiling , MicroRNAs/metabolism , Polycystic Kidney Diseases/metabolism , Systems Biology/methods , Animals , Diabetic Nephropathies/metabolism , Genome-Wide Association Study , Humans , Mice , Mice, Transgenic , Models, Biological , Models, Genetic , Mutation , Polymerase Chain Reaction/methods , Signal Transduction , Transcription, Genetic
17.
Am J Physiol Renal Physiol ; 300(3): F811-20, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21209007

ABSTRACT

Dystroglycan (DG or DAG1) is considered a critical link between the basement membrane and the cytoskeleton in multiple tissues. DG consists of two subunits, an extracellular α-subunit that binds laminin and other basement membrane components, and a transmembrane ß-subunit. DG-null mouse embryos die during early embryogenesis because DG is required for Reichert's membrane formation. DG also forms an integral part of the dystrophin-glycoprotein complex in muscle. Although no human DG mutations have been reported, multiple forms of muscular dystrophy have been linked to DG glycosylation defects, and targeted deletion of muscle DG causes muscular dystrophy in mice. Moreover, DG is widely distributed in endothelial and epithelial cells, including those in the kidney. There has therefore been significant interest in DG's role in the kidney, especially in podocytes. Previous reports suggested that DG's disturbance in podocytes might cause glomerular filtration barrier abnormalities. To fully understand DG's contribution to nephrogenesis and kidney function, we used a conditional DG allele and a variety of Cre mice to systematically delete DG from podocytes, ureteric bud, metanephric mesenchyme, and then from the whole kidney. Surprisingly, none of these conditional deletions resulted in significant morphological or functional abnormalities in the kidney. Furthermore, DG-deficient podocytes did not show increased susceptibility to injury, and DG-deficient kidneys did not show delayed recovery. Integrins are therefore likely the primary extracellular matrix receptors in renal epithelia.


Subject(s)
Acute Kidney Injury/metabolism , Dystroglycans/metabolism , Kidney/embryology , Kidney/physiology , Acute Kidney Injury/physiopathology , Animals , Dystroglycans/genetics , Epithelial Cells/metabolism , Integrases/genetics , Integrases/metabolism , Integrin alpha3/genetics , Integrin alpha3/metabolism , Kidney Glomerulus/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Models, Animal , Podocytes/metabolism
18.
Glycobiology ; 21(2): 152-61, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20855470

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) is a heparan sulfate (HS)-binding factor. GDNF is produced by somatic Sertoli cells, where it signals to maintain spermatogonial stem cells (SSCs) and reproduction. Here, we investigate the roles of extracellular HS 6-O-endosulfatases (Sulfs), Sulf1 and Sulf2, in the matrix transmission of GDNF from Sertoli cells to SSCs. Although Sulfs are not required for testis formation, Sulf deficiency leads to the accelerated depletion of SSCs, a testis phenotype similar to that of GDNF+/- mice. Mechanistically, we show that Sulfs are expressed in GDNF-producing Sertoli cells. In addition, reduced Sulf activity profoundly worsens haplo-deficient GDNF phenotypes in our genetic studies. These findings establish a critical role of Sulfs in promoting GDNF signaling and support a model in which Sulfs regulate the bioavailability of GDNF by enzymatically remodeling HS 6-O-desulfation to release GDNF from matrix sequestration. Further, Sertoli cell-specific transcriptional factor Wilm's tumor 1 (WT1) directly activates the transcription of both Sulf1 and Sulf2 genes. Together, our studies not only identify Sulfs as essential regulators of GDNF signaling in the SSC niche, but also as direct downstream targets of WT1, thus establishing a physiological role of WT1 in Sertoli cells.


Subject(s)
Sertoli Cells/metabolism , Spermatogonia , Sulfatases , Sulfotransferases , Animals , Cell Cycle Proteins , Cell Differentiation/physiology , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Heparitin Sulfate/metabolism , Humans , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA Splicing Factors , Rats , Signal Transduction/physiology , Spermatogonia/metabolism , Stem Cell Niche/metabolism , Stem Cells/metabolism , Sulfatases/genetics , Sulfatases/metabolism , Sulfotransferases/genetics , Sulfotransferases/metabolism
19.
Organogenesis ; 6(2): 61-70, 2010.
Article in English | MEDLINE | ID: mdl-20885852

ABSTRACT

Kidney development has been studied over the past sixty years as a model of embryonic induction during organogenesis. Wilms' tumor-1 (WT1), that encodes a transcription factor and RNA-binding protein, was one of the first tumor suppressor genes identified, and was soon thereafter shown to be associated with syndromic forms of childhood kidney disease and gonadal dysgenesis. Kidney agenesis, resulting from a null mutation in the WT1 gene, was one of the first examples of organ agenesis resulting from a gene targeting experiment. Thus, the study of the WT1 gene and its encoded proteins has been at the forefront of developmental biology, tumor biology and the molecular basis for disease. WT1 is now known to have an important role in kidney progenitor cells during development. This review will discuss recent advances in our understanding of kidney progenitor cells, and the recent identification of WT1 target genes in these cells.


Subject(s)
Kidney/cytology , Stem Cells/cytology , Stem Cells/metabolism , WT1 Proteins/metabolism , Gene Expression Regulation, Developmental , Humans , Kidney/embryology , Kidney/metabolism , Nephrons/cytology , Nephrons/embryology , Nephrons/metabolism , Signal Transduction/genetics , WT1 Proteins/genetics
20.
J Clin Invest ; 120(10): 3617-28, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20852388

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that is caused by mutations at two loci, polycystin 1 (PKD1) and polycystin 2 (PKD2). It is characterized by the formation of multiple cysts in the kidneys that can lead to chronic renal failure. Previous studies have suggested a role for hyperactivation of mammalian target of rapamycin (mTOR) in cystogenesis, but the etiology of mTOR hyperactivation has not been fully elucidated. In this report we have shown that mTOR is hyperactivated in Pkd1-null mouse cells due to failure of the HGF receptor c-Met to be properly ubiquitinated and subsequently degraded after stimulation by HGF. In Pkd1-null cells, Casitas B-lineage lymphoma (c-Cbl), an E3-ubiquitin ligase for c-Met, was sequestered in the Golgi apparatus with α3ß1 integrin, resulting in the inability to ubiquitinate c-Met. Treatment of mouse Pkd1-null cystic kidneys in organ culture with a c-Met pharmacological inhibitor resulted in inhibition of mTOR activity and blocked cystogenesis in this mouse model of ADPKD. We therefore suggest that blockade of c-Met is a potential novel therapeutic approach to the treatment of ADPKD.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Polycystic Kidney, Autosomal Dominant/metabolism , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/physiology , Ubiquitination , Animals , Cell Line , Cilia/physiology , Disease Models, Animal , Glycosylation , Golgi Apparatus/physiology , Integrin alpha3beta1/metabolism , Mice , Morphogenesis , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , TOR Serine-Threonine Kinases , TRPP Cation Channels/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...