Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotechnology ; 48(1-3): 41-58, 2005 Jun.
Article in English | MEDLINE | ID: mdl-19003031

ABSTRACT

An electronic nose (EN) device was used to detect microbial and viral contaminations in a variety of animal cell culture systems. The emission of volatile components from the cultures accumulated in the bioreactor headspace, was sampled and subsequently analysed by the EN device. The EN, which was equipped with an array of 17 chemical gas sensors of varying selectivity towards the sampled volatile molecules, generated response patterns of up to 85 computed signals. Each 15 or 20 min a new gas sample was taken generating a new response pattern. A software evaluation tool visualised the data mainly by using principal component analysis. The EN was first used to detect microbial contaminations in a Chinese hamster ovary (CHO) cell line producing a recombinant human macrophage colony stimulating factor (rhM-CSF). The CHO cell culture was contaminated by Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida utilis which all were detected. The response patterns from the CHO cell culture were compared with monoculture references of the microorganisms. Second, contaminations were studied in an Sf-9 insect cell culture producing another recombinant protein (VP2 protein). Contaminants were detected from E. coli, a filamentous fungus and a baculovirus. Third, contamination of a human cell line, HEK-293, infected with E. coli exhibited comparable results. Fourth, bacterial contaminations could also be detected in cultures of a MLV vector producer cell line. Based on the overall experiences in this study it is concluded that the EN method has in a number of cases the potential to be developed into a useful on-line contamination alarm in order to support safety and economical operation for industrial cultivation.

SELECTION OF CITATIONS
SEARCH DETAIL
...