Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(2): 1165-1175, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36595580

ABSTRACT

Iodine-containing clusters are expected to be central to new particle formation (NPF) events in polar and midlatitude coastal regions. Iodine oxoacids and iodine oxides are observed in newly formed clusters, and in more polluted midlatitude settings, theoretical studies suggest ammonia may increase growth rates. Structural information was obtained via infrared (IR) spectroscopy and quantum chemical calculations for a series of clusters containing ammonia, iodic acid, and iodine pentoxide. Structures for five of the smallest cationic clusters present in the mass spectrum were identified, and four of the structures were found to preferentially form halogen and/or covalent bonds over hydrogen bonds. Ammonia is important in proton transfer from iodic acid components and also provides a scaffold to template the formation of a halogen and covalent bonded backbone. The calculations executed for the two largest clusters studied suggested the formation of a covalent I3O8- anion within the clusters.

2.
J Chem Phys ; 154(1): 014304, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33412869

ABSTRACT

The role of water in the formation of particles from atmospheric trace gases is not well understood, in large part due to difficulties in detecting its presence under atmospheric conditions and the variety of possible structures that must be screened computationally. Here, we use infrared spectroscopy and variable-temperature ion trap mass spectrometry to investigate the structural motifs adopted by water bound to ammonium bisulfate clusters and their temperature dependence. For clusters featuring only acid-base linkages, water adopts a bridging arrangement spanning an adjacent ammonium and bisulfate. For larger clusters, water can also insert into a bisulfate-bisulfate hydrogen bond, yielding hydration isomers with very similar binding energies. The population of these isomers shows a complex temperature evolution, as an apparent third isomer appears with a temperature dependence that is difficult to explain using simple thermodynamic arguments. These observations suggest that the thermodynamics of water binding to atmospheric clusters such as these may not be straightforward.

3.
J Chem Phys ; 153(3): 034307, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32716191

ABSTRACT

Atmospheric new particle formation is the process by which atmospheric trace gases, typically acids and bases, cluster and grow into potentially climatically relevant particles. Here, we evaluate the structures and structural motifs present in small cationic ammonium and aminium bisulfate clusters that have been studied both experimentally and computationally as seeds for new particles. For several previously studied clusters, multiple different minimum-energy structures have been predicted. Vibrational spectra of mass-selected clusters and quantum chemical calculations allow us to assign the minimum-energy structure for the smallest cationic cluster of two ammonium ions and one bisulfate ion to a CS-symmetry structure that is persistent under amine substitution. We derive phenomenological vibrational frequency scaling factors for key bisulfate vibrations to aid in the comparison of experimental and computed spectra of larger clusters. Finally, we identify a previously unassigned spectral marker for intermolecular bisulfate-bisulfate hydrogen bonds and show that it is present in a class of structures that are all lower in energy than any previously reported structure. Tracking this marker suggests that this motif is prominent in larger clusters as well as ∼180 nm ammonium bisulfate particles. Taken together, these results establish a set of structural motifs responsible for binding of gases at the surface of growing clusters that fully explain the spectrum of large particles and provide benchmarks for efforts to improve structure predictions, which are critical for the accurate theoretical treatment of this process.

4.
J Am Soc Mass Spectrom ; 30(11): 2267-2277, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31506909

ABSTRACT

Atmospheric new particle formation (NPF) is the process by which atmospheric trace gases such as sulfuric acid, ammonia, and amines cluster and grow into climatically relevant particles. The mechanism by which these particles form and grow has remained unclear, in large part due to difficulties in obtaining molecular-level information about the clusters as they grow. Mass spectrometry-based methods using electrospray ionization (ESI) as a cluster source have shed light on this process, but the produced cluster distributions have not been rigorously validated against experiments performed in atmospheric conditions. Ionic clusters are produced by ESI of solutions containing the amine and bisulfate or by spraying a sulfuric acid solution and introducing trace amounts of amine gas into the ESI environment. The amine content of clusters can be altered by increasing the amount of amine introduced into the ESI environment, and certain cluster compositions can only be made by the vapor exchange method. Both approaches are found to yield clusters with the same structures. Aminium bisulfate cluster distributions produced in a controlled and isolated ESI environment can be optimized to closely resemble those observed by chemical ionization in the CLOUD chamber at CERN. These studies indicate that clusters generated by ESI are also observed in traditional atmospheric measurements, which puts ESI mass spectrometry-based studies on firmer footing and broadens the scope of traditional mass spectrometry experiments that may be applied to NPF.

5.
J Am Chem Soc ; 141(37): 14650-14660, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31466441

ABSTRACT

The formation of ternary aqua complexes of metal-based diagnostics and therapeutics is closely correlated to their in vivo efficacy but approaches to quantify the presence of coordinated water ligands are limited. We introduce a general and high-throughput method for characterizing the hydration state of para- and diamagnetic coordination complexes in the gas phase based on variable-temperature ion trap tandem mass spectrometry. Ternary aqua complexes are directly observed in the mass spectrum and quantified as a function of ion trap temperature. We recover expected periodic trends for hydration across the lanthanides and distinguish complexes with several inner-sphere water ligands by inspection of temperature-dependent speciation curves. We derive gas-phase thermodynamic parameters for discernible inner- and second-sphere hydration events, and discuss their application to predict solution-phase behavior. The differences in temperature at which water binds in the inner and outer spheres arise primarily from entropic effects. The broad applicability of this method allows us to estimate the hydration states of Ga, Sc, and Zr complexes under active preclinical and clinical study with as-yet undetermined hydration number. Variable-temperature mass spectrometry emerges as a general tool to characterize and quantitate trends in inner-sphere hydration across the periodic table.


Subject(s)
Tandem Mass Spectrometry/methods , Water/chemistry , Coordination Complexes/chemistry , Gases/chemistry , Metals/chemistry , Temperature , Thermodynamics
6.
J Phys Chem Lett ; 9(18): 5647-5652, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30203654

ABSTRACT

The acid-base chemistry of amines and sulfuric acid promotes growth in the early stages of atmospheric new particle formation, with more basic amines enhancing growth rates. Hydration of these particles has been proposed to depend on acidity or basicity but is difficult to quantify; therefore, the role of water in this process is not well understood. Using tandem mass spectrometry coupled to a temperature-controlled ion trap, we show that water uptake by aminium bisulfate clusters depends on the total number of free hydrogen bond donors in the cluster and is unaffected by the interchange of amines featuring the same number of substituents but differing gas-phase basicity. Analyzing this trend reveals site-specific propensities for hydration. These results indicate that hydration is determined by structural factors and that reported dependences on acidity or basicity arise from the weaker correlation between the number of hydrogen bond donors of amines and their gas-phase basicity.

7.
J Phys Chem Lett ; 9(6): 1216-1222, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29464955

ABSTRACT

Acid-base cluster chemistry drives atmospheric new particle formation (NPF), but the details of the growth mechanisms are difficult to experimentally probe. Clusters of ammonia, alkylamines, and sulfuric acid, species fundamental to NPF, are probed by infrared spectroscopy. These spectra show that substitution of amines for ammonia, which is linked to accelerated growth, induces profound structural rearrangement in clusters with initial compositions (NH4+) n+1(HSO4-) n (1 ≤ n ≤ 3). This rearrangement is driven by the loss of N-H hydrogen bond donors, yielding direct bisulfate-bisulfate hydrogen bonds, and its onset with respect to cluster composition indicates that more substituted amines induce rearrangement at smaller sizes. A simple model counting hydrogen bond donors and acceptors explains these observations. The presence of direct hydrogen bonds between formal anions shows that hydrogen bonding can compete with Coulombic forces in determining cluster structure. These results suggest that NPF mechanisms may be highly dependent on amine identity.

SELECTION OF CITATIONS
SEARCH DETAIL
...