Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(2): e24067, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293514

ABSTRACT

Lasers are widely used for structuring metallic surfaces by ablating material. An alternative approach for laser structuring is surface structuring by laser remelting (WaveShape), which is based onthe continuous remelting of a thin surface layer using laser radiation while simultaneously modulating the laser power. The structures are generated by redistribution of the molten material. The structure height and the structure wavelength of periodic structures created using WaveShape can be precisely adjusted by the adaption of various process parameters. However, the structures produced are mostly asymmetrical. An asymmetric structure refers to a structure that is not symmetrical and is inclined in or against the scanning direction. In the context of this work, the asymmetry of the structures was significantly reduced through two different process adaptations. As a first adaption, a compensation term is added to the laser power modulation, which is calculated from the difference profile between a target profile and a structured profile. With this adaption, the shape deviation of an asymmetrical structure could be decreased by 66 %. Asymmetry can be reduced efficiently, although the difference profile required must be determined from a preliminary process step. As a second adaption, a modulation of the scanning speed is investigated with which shape deviation can be decreased by 40 %. Asymmetry is not as effectively prevented as when using the first adaption, but the adaption can be performed without the difference profile. Another aim was to investigate the destructuring, i.e. the removal and therefore smoothing, of asymmetric structures. Using the inverse laser power modulation for destructuring, the structure height of a symmetrical structure can be reduced by 91 % while the structure height of an asymmetric structure can be reduced by 68 %. To increase the efficiency of destructuring of an asymmetrical structure, iterative destructuring was investigated. With two iterations of destructuring, the structure height was reduced by 90 %. As a second approach for more efficient destructuring of asymmetric structures an adaption of the laser power modulation via a compensation term was investigated. The structure height could be reduced by 86 %. In summary, results show that asymmetry can be prevented when structuring with WaveShape and that asymmetric structures can be destructured efficiently.

2.
Micromachines (Basel) ; 12(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805382

ABSTRACT

Laser structuring by remelting (WaveShape) is a manufacturing process for metal surfaces in which structures are generated without material removal. The structuring principle is based on the controlled motion of the three-phase line in the area of the solidification front. The contour of the solidification front is imprinted into the remelting track during the continuous solidification process. Typically, harmonic surface structures in the form of sinusoidal oscillations are generated by means of WaveShape with virtually no material loss. However, a significant shape deviation is often observed over a wide range of process parameters. In this study, it was found that much of the shape deviation is concentrated at a spatial wavelength equal to half the spatial wavelength used for structuring. Therefore, an approach to reduce the shape deviations was specifically investigated by superimposing a compensation signal on the harmonic structuring signal. In this approach, a compensation signal with half the spatial wavelength was varied in phase and amplitude and superimposed on the structuring signal. Amplitude and phase shift of the compensation signal were further investigated for selected laser beam diameters and spatial wavelengths. This demonstrated that a shape deviation of harmonic surface structures on titanium alloy Ti6Al4V could be reduced by up to 91% by means of an adapted compensation signal.

SELECTION OF CITATIONS
SEARCH DETAIL
...