Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 7: 198, 2016.
Article in English | MEDLINE | ID: mdl-27313538

ABSTRACT

CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid-base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 µatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na(+)/K(+)-ATPase (NKA), Na(+)/H(+)-exchanger 3 (NHE3), Na(+)/[Formula: see text] cotransporter (NBC1), pendrin-like Cl(-)/[Formula: see text] exchanger (SLC26a6), V-type H(+)-ATPase subunit a (VHA), and Cl(-) channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal [Formula: see text] secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood [Formula: see text] levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.

2.
Article in English | MEDLINE | ID: mdl-26688541

ABSTRACT

Marine teleost fish sustain compensation of extracellular pH after exposure to hypercapnia by means of efficient ion and acid-base regulation. Elevated rates of ion and acid-base regulation under hypercapnia may be stimulated further by elevated temperature. Here, we characterized the regulation of transepithelial ion transporters (NKCC1, NBC1, SLC26A6, NHE1 and 2) and ATPases (Na(+)/K(+) ATPase and V-type H(+) ATPase) in gills of Atlantic cod (Gadus morhua) after 4 weeks of exposure to ambient and future PCO2 levels (550 µatm, 1200 µatm, 2200 µatm) at optimum (10 °C) and summer maximum temperature (18 °C), respectively. Gene expression of most branchial ion transporters revealed temperature- and dose-dependent responses to elevated PCO2. Transcriptional regulation resulted in stable protein expression at 10 °C, whereas expression of most transport proteins increased at medium PCO2 and 18 °C. mRNA and protein expression of distinct ion transport proteins were closely co-regulated, substantiating cellular functional relationships. Na(+)/K(+) ATPase capacities were PCO2 independent, but increased with acclimation temperature, whereas H(+) ATPase capacities were thermally compensated but decreased at medium PCO2 and 10 °C. When functional capacities of branchial ATPases were compared with mitochondrial F1Fo ATP-synthase strong correlations of F1Fo ATP-synthase and ATPase capacities generally indicate close coordination of branchial aerobic ATP demand and supply. Our data indicate physiological plasticity in the gills of cod to adjust to a warming, acidifying ocean within limits. In light of the interacting and non-linear, dose-dependent effects of both climate factors the role of these mechanisms in shaping resilience under climate change remains to be explored.


Subject(s)
Climate Change , Gadus morhua/genetics , Gadus morhua/metabolism , Seawater/chemistry , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Carbon Dioxide/chemistry , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation , Hydrogen-Ion Concentration , Male , Proton-Translocating ATPases/genetics , Proton-Translocating ATPases/metabolism , Temperature
3.
Article in English | MEDLINE | ID: mdl-25535111

ABSTRACT

Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18°C). Isolated perfused gill preparations were established to determine gill thermal plasticity during acute exposures (10-22°C) and in vivo costs of Na(+)/K(+)-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H(+)-ATPase and Na(+)/K(+)-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na(+)/K(+)-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na(+)/K(+)-ATPase, which remained unchanged under elevated CO2 at 10°C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na(+)/K(+)ATPase and H(+)-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.


Subject(s)
Gadus morhua/metabolism , Gills/metabolism , Hypercapnia/metabolism , Animals , Carbon Dioxide/metabolism , Energy Metabolism , Female , Fish Proteins/metabolism , Male , Organ Culture Techniques , Perfusion , Proton-Translocating ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...