Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934398

ABSTRACT

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

2.
Angew Chem Int Ed Engl ; 62(4): e202215071, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36413097

ABSTRACT

Organic ultralong room temperature phosphorescence (RTP), or organic afterglow, is a unique phenomenon, gaining widespread attention due to its far-reaching application potential and fundamental interest. Here, two laterally expanded 9,10-dimesityl-dihydro-9,10-diboraanthracene (DBA) derivatives are demonstrated as excellent afterglow materials for red and blue-green light emission, which is traced back to persistent thermally activated delayed fluorescence and RTP. The lateral substitution of polycyclic DBA scaffold, together with weak transversal electron-donating mesityl groups, ensures the optimal molecular properties for (reverse) intersystem crossing and long-lived triplet states in a rigid poly(methyl methacrylate) matrix. The achieved afterglow emission quantum yields of up to 3 % and 15 %, afterglow lifetimes up to 0.8 s and 3.2 s and afterglow durations up to 5 s and 25 s (for red and blue-green emitters, respectively) are attributed to the properties of single molecules.

3.
Angew Chem Int Ed Engl ; 61(5): e202113207, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34918438

ABSTRACT

Hybrid lead halide perovskite solar cells (PSCs) have emerged as potential competitors to silicon-based solar cells with an unprecedented increase in power conversion efficiency (PCE), nearing the breakthrough point toward commercialization. However, for hole-transporting materials, it is generally acknowledged that complex structures often create issues such as increased costs and hazardous substances in the synthetic schemes, when translated from the laboratory to manufacture on a large scale. Here, we present cyclobutane-based hole-selective materials synthesized using simple and green-chemistry inspired protocols in order to reduce costs and adverse environmental impact. A series of novel semiconductors with molecularly engineered side arms were successfully applied in perovskite solar cells. V1366-based PSCs feature impressive efficiency of 21 %, along with long-term operational stability under atmospheric environment. Most importantly, we also fabricated perovskite solar modules exhibiting a record efficiency over 19 % with an active area of 30.24 cm2 .

4.
J Phys Chem A ; 125(7): 1637-1641, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33576226

ABSTRACT

The successful development of thermally activated delayed fluorescence (TADF) OLEDs relies on advances in molecular design. To guide the molecular design toward compounds with preferable properties, special care should be taken while estimating the parameters of prompt and delayed fluorescence. Mistakes made in the initial steps of analysis may lead to completely misleading conclusions. Here we show that inaccuracies usually are introduced in the very first steps while estimating the solid-state prompt and delayed fluorescence quantum yields, resulting in an overestimation of prompt fluorescence (PF) parameters and a subsequent underestimation of the delayed emission (DF) yield and rates. As a solution to the problem, a working example of a more sophisticated analysis is provided, stressing the importance of in-depth research of emission properties in both oxygen-saturated and oxygen-free surroundings.

5.
Nanotechnology ; 30(34): 345702, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-30995629

ABSTRACT

Perovskite light converting layers optimization for cost-efficient white light emitting diodes (LED) was demonstrated. High excitation independent internal quantum efficiency (IQE) of 80% and weakly excitation dependent PL spectra suitable for white light generation were obtained in the mixed cation CsxMA1-xPbBr3 perovskite nanocrystal layers with optimal x = 0.3 being determined by effective surface passivation and phase mixing as revealed by x-ray diffraction. Enhancement of the PL homogeneity and the external quantum efficiency (EQE) were secured when using 2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi) additive in the layer preparation process. Excitation dependent PL intensity, decay time, and IQE revealed that the high emission efficiency of the layers originates from a dominant radiative localized exciton recombination (130 ns) weakly influenced by the nonradiative free carrier recombination (750 ns). Warm and cool white LEDs with correlated color temperature 3000 K and 5600 K, and color rendering index 82 and 74, respectively, were realized by using the optimized perovskite layers, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) red emitter and a blue LED.

6.
ACS Appl Mater Interfaces ; 10(3): 2768-2775, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29278316

ABSTRACT

Organic single crystals (SCs) expressing long-range periodicity and dense molecular packing are an attractive amplifying medium for the realization of electrically driven organic lasers. However, the amplified spontaneous emission (ASE) threshold (1-10 kW/cm2) of SCs is still significantly higher compared to those of amorphous neat or doped films. The current study addresses this issue by investigating ASE properties of rigid bridging group-containing bifluorene SCs. Introduction of the rigid bridges in bifluorenes enables considerable reduction of nonradiative decay, which, along with enhanced fluorescence quantum yield (72-82%) and short excited state lifetime (1.5-2.5 ns), results in high radiative decay rates (∼0.5 × 109 s-1) of the SCs, making them highly attractive for lasing applications. The revealed ASE threshold of 400 W/cm2 in acetylene-bridged bifluorene SCs is found to be among the lowest ever reported for organic crystals. Ultrafast transient absorption spectroscopy enabled one to disclose pronounced differences in the excited state dynamics of the studied SCs, pointing out the essential role of radiative traps in achieving a record low ASE threshold. Although the origin of the trap states was not completely unveiled, the obtained results clearly evidence that the crystal doping approach can be successful in achieving extremely low ASE thresholds required for electrically pumped organic laser.

7.
Phys Chem Chem Phys ; 19(25): 16737-16748, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28621780

ABSTRACT

Seven new derivatives of phenanthro[9,10-d]imidazole having differenet substituents at the 1st and the 2nd positions of the phenanthroimidazole moiety were synthesized and characterized. The comparative study of their properties was performed employing thermal, optical, electrochemical and photoelectrical measurements. The properties of the newly synthesized compounds were compared with those of earlier reported derivatives of phenanthroimidazole and several interesting new findings were disclosed. Density functional theory calculations accompanied by optical spectroscopy measurements have shown the possibility of tuning the emission properties (excited-stated decay rate, fluorescence quantum yield, etc.) of phenanthro[9,10-d]imidazole derivatives via attachment of different substituents to the 1st and the 2nd positions. The most polar and bulky substituents linked to the 2nd position were found to have the greatest impact on the emissive properties of compounds causing (i) fluorescence quantum yield enhancement of dilute liquid and solid solutions (up to 97%), (ii) suppression of intramolecular torsion-induced nonradiative excited-state relaxation in rigid polymer films as well as (iii) inhibition of aggregation-promoted emission quenching in the neat films. Most of the studied compunds exhibited ambipolar charge transport character with comparable drift mobilities of holes and electrons. The highest hole and electron mobilities approaching 10-4 cm2 V-1 s-1 were observed for the derivative having a triphenylamino group at the 1st position of the imidazole ring and the phenyl group at the 2nd position. The estimated triplet energies of phenanthro[9,10-d]imidazole compounds were found to be in the range of 2.4-2.6 eV, which is sufficiently high to ensure effective energy transfer to yellow/red emitters.

8.
Phys Chem Chem Phys ; 17(19): 12935-48, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25912324

ABSTRACT

Deep-blue-emitting benzo[c]fluorene-cored compounds featuring twisted peripheral moieties for suppressed concentration quenching of emission were synthesized and investigated as potential materials for light amplification. This detailed study of the effect of concentration on the spontaneous and stimulated emission, excited-state lifetime and susceptibility to form aggregates obtained for different benzofluorenes, has enabled the understanding of the concentration dependence of the amplified spontaneous emission (ASE) threshold and revealed the optimal concentration for the lowest threshold. The weak concentration quenching accompanied by high fluorescence quantum yield (>40%) and radiative decay rate (>5 × 10(8) s(-1)) have enabled the attainment of the lowest ASE threshold in the neat amorphous film of benzofluorene bearing dihexylfluorenyl peripheral moieties. Aggregate formation was found to negligibly affect the emission efficiency of the benzofluorene films; however, it drastically increased ASE threshold via the enhanced scattering of directional stimulated emission, and thereby implied the necessity to utilize homogeneous glassy films as the lasing medium. Although the bulky dihexylfluorenyl groups at the periphery ensured the formation of glassy benzofluorene films with the ASE threshold as low as 900 W cm(-2) (under nanosecond excitation), they adversely affected carrier drift mobility, which implied a tradeoff between ASE and charge transport properties for the lasing materials utilized in the neat form. Such a low ASE threshold attained in air is among the lowest reported for solution-processed neat films. The low threshold and enhanced photostability of benzofluorenes against fluorene compounds in air show great potential for benzofluorene-cored molecular glasses as active media for lasing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...