Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34572773

ABSTRACT

Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.

3.
Cytometry A ; 95(3): 279-289, 2019 03.
Article in English | MEDLINE | ID: mdl-30536810

ABSTRACT

Daratumumab is a CD38-targeted human monoclonal antibody with direct anti-myeloma cell mechanisms of action. Flow cytometry in relapsed and/or refractory multiple myeloma (RRMM) patients treated with daratumumab revealed cytotoxic T-cell expansion and reduction of immune-suppressive populations, suggesting immune modulation as an additional mechanism of action. Here, we performed an in-depth analysis of the effects of daratumumab on immune-cell subpopulations using high-dimensional mass cytometry. Whole-blood and bone-marrow baseline and on-treatment samples from RRMM patients who participated in daratumumab monotherapy studies (SIRIUS and GEN501) were evaluated with high-throughput immunophenotyping. In daratumumab-treated patients, the intensity of CD38 marker expression decreased on many immune cells in SIRIUS whole-blood samples. Natural killer (NK) cells were depleted with daratumumab, with remaining NK cells showing increased CD69 and CD127, decreased CD45RA, and trends for increased CD25, CD27, and CD137 and decreased granzyme B. Immune-suppressive population depletion paralleled previous findings, and a newly observed reduction in CD38+ basophils was seen in patients who received monotherapy. After 2 months of daratumumab, the T-cell population in whole-blood samples from responders shifted to a CD8 prevalence with higher granzyme B positivity (P = 0.017), suggesting increased killing capacity and supporting monotherapy-induced CD8+ T-cell activation. High-throughput cytometry immune profiling confirms and builds upon previous flow cytometry data, including comparable CD38 marker intensity on plasma cells, NK cells, monocytes, and B/T cells. Interestingly, a shift toward cytolytic granzyme B+ T cells was also observed and supports adaptive responses in patients that may contribute to depth of response. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Basophils/cytology , Basophils/drug effects , Basophils/immunology , Bone Marrow Cells/cytology , Bone Marrow Cells/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Flow Cytometry , Granzymes/metabolism , Humans , Immunophenotyping , Killer Cells, Natural/cytology , Multiple Myeloma/blood , Multiple Myeloma/metabolism , Recurrence
6.
Clin Cancer Res ; 23(24): 7498-7511, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29025767

ABSTRACT

Purpose: Daratumumab treatment results in a marked reduction of CD38 expression on multiple myeloma cells. The aim of this study was to investigate the clinical implications and the underlying mechanisms of daratumumab-mediated CD38 reduction.Experimental Design: We evaluated the effect of daratumumab alone or in combination with lenalidomide-dexamethasone, on CD38 levels of multiple myeloma cells and nontumor immune cells in the GEN501 study (daratumumab monotherapy) and the GEN503 study (daratumumab combined with lenalidomide-dexamethasone). In vitro assays were also performed.Results: In both trials, daratumumab reduced CD38 expression on multiple myeloma cells within hours after starting the first infusion, regardless of depth and duration of the response. In addition, CD38 expression on nontumor immune cells, including natural killer cells, T cells, B cells, and monocytes, was also reduced irrespective of alterations in their absolute numbers during therapy. In-depth analyses revealed that CD38 levels of multiple myeloma cells were only reduced in the presence of complement or effector cells, suggesting that the rapid elimination of CD38high multiple myeloma cells can contribute to CD38 reduction. In addition, we discovered that daratumumab-CD38 complexes and accompanying cell membrane were actively transferred from multiple myeloma cells to monocytes and granulocytes. This process of trogocytosis was also associated with reduced surface levels of some other membrane proteins, including CD49d, CD56, and CD138.Conclusions: Daratumumab rapidly reduced CD38 expression levels, at least in part, through trogocytosis. Importantly, all these effects also occurred in patients with deep and durable responses, thus excluding CD38 reduction alone as a mechanism of daratumumab resistance.The trials were registered at www.clinicaltrials.gov as NCT00574288 (GEN501) and NCT1615029 (GEN503). Clin Cancer Res; 23(24); 7498-511. ©2017 AACR.


Subject(s)
ADP-ribosyl Cyclase 1/genetics , Antibodies, Monoclonal/administration & dosage , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , ADP-ribosyl Cyclase 1/immunology , Aged , Antibodies, Monoclonal/adverse effects , B-Lymphocytes/immunology , Cell Line, Tumor , Dexamethasone/administration & dosage , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Granulocytes/drug effects , Granulocytes/immunology , Humans , Killer Cells, Natural/immunology , Lenalidomide , Male , Middle Aged , Monocytes/drug effects , Monocytes/immunology , Multiple Myeloma/genetics , Multiple Myeloma/immunology , T-Lymphocytes , Thalidomide/administration & dosage , Thalidomide/adverse effects
7.
Blood ; 128(14): 1821-1828, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27531679

ABSTRACT

Daratumumab, a human CD38 immunoglobulin G1 kappa (IgG1κ) monoclonal antibody, has activity as monotherapy in multiple myeloma (MM). This phase 1/2 study investigated daratumumab plus lenalidomide/dexamethasone in refractory and relapsed/refractory MM. Part 1 (dose escalation) evaluated 4 daratumumab doses plus lenalidomide (25 mg/day orally on days 1-21 of each cycle) and dexamethasone (40 mg/week). Part 2 (dose expansion) evaluated daratumumab at the recommended phase 2 dose (RP2D) plus lenalidomide/dexamethasone. Safety, efficacy, pharmacokinetics, immunogenicity, and accelerated daratumumab infusions were studied. In part 1 (13 patients), no dose-limiting toxicities were observed, and 16 mg/kg was selected as the R2PD. In part 2 (32 patients), median time since diagnosis was 3.2 years, with a median of 2 prior therapies (range, 1-3 prior therapies), including proteasome inhibitors (91%), alkylating agents (91%), autologous stem cell transplantation (78%), thalidomide (44%), and lenalidomide (34%); 22% of patients were refractory to the last line of therapy. Grade 3 to 4 adverse events (≥5%) included neutropenia, thrombocytopenia, and anemia. In part 2, infusion-related reactions (IRRs) occurred in 18 patients (56%); most were grade ≤2 (grade 3, 6.3%). IRRs predominantly occurred during first infusions and were more common during accelerated infusions. In part 2 (median follow-up of 15.6 months), overall response rate was 81%, with 8 stringent complete responses (25%), 3 complete responses (9%), and 9 very good partial responses (28%). Eighteen-month progression-free and overall survival rates were 72% (95% confidence interval, 51.7-85.0) and 90% (95% confidence interval, 73.1-96.8), respectively. Daratumumab plus lenalidomide/dexamethasone resulted in rapid, deep, durable responses. The combination was well tolerated and consistent with the safety profiles observed with lenalidomide/dexamethasone or daratumumab monotherapy. This trial was registered at www.clinicaltrials.gov as #NCT01615029.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/therapeutic use , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Demography , Dexamethasone/adverse effects , Dexamethasone/pharmacokinetics , Disease-Free Survival , Female , Humans , Lenalidomide , Middle Aged , Recurrence , Thalidomide/adverse effects , Thalidomide/pharmacokinetics , Thalidomide/therapeutic use , Treatment Outcome
8.
Blood ; 128(3): 384-94, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27222480

ABSTRACT

Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab's effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8(+):CD4(+) and CD8(+):Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8(+) PB T-cell counts. Depletion of CD38(+) immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration.


Subject(s)
ADP-ribosyl Cyclase 1 , Antibodies, Monoclonal/administration & dosage , CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Multiple Myeloma , Neoplasm Proteins , T-Lymphocytes, Regulatory , ADP-ribosyl Cyclase 1/blood , ADP-ribosyl Cyclase 1/immunology , Adolescent , Adult , Aged , Aged, 80 and over , CD4-CD8 Ratio , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Child , Child, Preschool , Female , Humans , Infant , Male , Membrane Glycoproteins/blood , Membrane Glycoproteins/immunology , Middle Aged , Multiple Myeloma/blood , Multiple Myeloma/drug therapy , Multiple Myeloma/immunology , Neoplasm Proteins/blood , Neoplasm Proteins/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
9.
N Engl J Med ; 373(13): 1207-19, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26308596

ABSTRACT

BACKGROUND: Multiple myeloma cells uniformly overexpress CD38. We studied daratumumab, a CD38-targeting, human IgG1κ monoclonal antibody, in a phase 1-2 trial involving patients with relapsed myeloma or relapsed myeloma that was refractory to two or more prior lines of therapy. METHODS: In part 1, the dose-escalation phase, we administered daratumumab at doses of 0.005 to 24 mg per kilogram of body weight. In part 2, the dose-expansion phase, 30 patients received 8 mg per kilogram of daratumumab and 42 received 16 mg per kilogram, administered once weekly (8 doses), twice monthly (8 doses), and monthly for up to 24 months. End points included safety, efficacy, and pharmacokinetics. RESULTS: No maximum tolerated dose was identified in part 1. In part 2, the median time since diagnosis was 5.7 years. Patients had received a median of four prior treatments; 79% of the patients had disease that was refractory to the last therapy received (64% had disease refractory to proteasome inhibitors and immunomodulatory drugs and 64% had disease refractory to bortezomib and lenalidomide), and 76% had received autologous stem-cell transplants. Infusion-related reactions in part 2 were mild (71% of patients had an event of any grade, and 1% had an event of grade 3), with no dose-dependent adverse events. The most common adverse events of grade 3 or 4 (in ≥ 5% of patients) were pneumonia and thrombocytopenia. The overall response rate was 36% in the cohort that received 16 mg per kilogram (15 patients had a partial response or better, including 2 with a complete response and 2 with a very good partial response) and 10% in the cohort that received 8 mg per kilogram (3 had a partial response). In the cohort that received 16 mg per kilogram, the median progression-free survival was 5.6 months (95% confidence interval [CI], 4.2 to 8.1), and 65% (95% CI, 28 to 86) of the patients who had a response did not have progression at 12 months. CONCLUSIONS: Daratumumab monotherapy had a favorable safety profile and encouraging efficacy in patients with heavily pretreated and refractory myeloma. (Funded by Janssen Research and Development and Genmab; ClinicalTrials.gov number, NCT00574288.).


Subject(s)
ADP-ribosyl Cyclase 1/antagonists & inhibitors , Antibodies, Monoclonal/administration & dosage , Antineoplastic Agents/administration & dosage , Multiple Myeloma/drug therapy , Adult , Aged , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Disease-Free Survival , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Humans , Male , Middle Aged , Pneumonia/chemically induced , Thrombocytopenia/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...