Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 5(3): 306-310, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-35614726

ABSTRACT

Surface-modified carbon nanotubes (CNTs) have become well-established filler materials for polymer nanocomposites. However, in immiscible polymer blends, the CNT-coating is selective toward the more compatible phase, which suppresses their homogeneous distribution and limits harnessing the full potential of the filler. In this study, we show that multiwalled CNTs with a patchy polystyrene/poly(methyl methacrylate) (PS/PMMA) corona disperse equally well in both phases of an incompatible PS/PMMA polymer blend. Unlike polymer-grafted CNTs with a uniform corona, the patchy CNTs are able to adjust their corona structure to the blend phases by selective swelling/collapse of respective miscible/immiscible surface patches. Importantly, the high interfacial activity of patchy CNTs further causes a significant decrease in PMMA droplet size with increasing filler content. The combined effect of compatibilization and homogeneous distribution makes patchy CNTs interesting materials for polymer blend nanocomposites, where next to the compatibilization, a homogeneous filler distribution is important to gain the desired materials property (e.g., reinforcement).

2.
Langmuir ; 26(24): 19181-90, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21090823

ABSTRACT

Thermoreversible hydroferrogels (FGs) have been prepared via gelation of aqueous maghemite ferrofluids (FFs) using the triblock copolymer Pluronic P123 as gelator. In the investigated concentration range of 28-42 wt % P123, long-term stable homogeneous FGs can be prepared from FFs with a maximum maghemite content of 14 wt %. For higher FF concentrations up to 29 wt %, however, homogeneous FGs were formed only for gelator contents up to ca. 33 wt %. A combination of rheology and µ-DSC was applied as an alternative method to construct the P123 phase diagram, without the need for visual methods or scattering techniques. Using this procedure, we could show that maghemite nanoparticles can be effectively templated by the cubic and hexagonal P123 mesophases in a concentration range of 33-38 wt % P123 and FF concentrations up to 14 wt %, respectively. Most importantly, the phase behavior and the corresponding phase-transition temperatures of P123 were not significantly altered. As a result, the FGs show a reversible temperature-triggered transition from a cubic hard gel to a hexagonal gel, which is linked with a softening of the gel. Furthermore, this concept can be applied to template cobalt ferrite nanoparticle effectively, too. Magnetization experiments revealed that the superparamagnetic behavior of the maghemite nanoparticles, which show a Néel type relaxation, is not altered in the corresponding FGs. In contrast, FGs based on blocked cobalt ferrite nanoparticles show a hysteretic behavior, which indicates a strong mechanical coupling between the P123 mesophase and the magnetic nanoparticles.


Subject(s)
Ferric Compounds/chemistry , Hydrogels/chemistry , Mechanical Phenomena , Poloxalene/chemistry , Temperature , Calorimetry, Differential Scanning , Cobalt/chemistry , Rheology , Vibration
3.
J Chem Phys ; 128(16): 164709, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18447481

ABSTRACT

A sphere of a ferrogel is exposed to a homogeneous magnetic field. In accordance to theoretical predictions, it gets elongated along the field lines. The time dependence of the elastic shear modulus causes the elongation to increase with time, similar to mechanic creep experiments, and the rapid excitation causes the sphere to vibrate. Both phenomena can be well described by a damped harmonic oscillator model. By comparing the elongation along the field to the contraction perpendicular to it, we can calculate Poisson's ratio of the gel. The magnitude of the elongation is compared to the theoretical predictions for elastic spheres in homogeneous fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...