Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Plants ; 9(9): 1468-1480, 2023 09.
Article in English | MEDLINE | ID: mdl-37591928

ABSTRACT

Although many studies have shown that microbes can ectopically stimulate or suppress plant immune responses, the fundamental question of whether the entire preexisting microbiota is indeed required for proper development of plant immune response remains unanswered. Using a recently developed peat-based gnotobiotic plant growth system, we found that Arabidopsis grown in the absence of a natural microbiota lacked age-dependent maturation of plant immune response and were defective in several aspects of pattern-triggered immunity. Axenic plants exhibited hypersusceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. Microbiota-mediated immunocompetence was suppressed by rich nutrient conditions, indicating a tripartite interaction between the host, microbiota and abiotic environment. A synthetic microbiota composed of 48 culturable bacterial strains from the leaf endosphere of healthy Arabidopsis plants was able to substantially restore immunocompetence similar to plants inoculated with a soil-derived community. In contrast, a 52-member dysbiotic synthetic leaf microbiota overstimulated the immune transcriptome. Together, these results provide evidence for a causal role of a eubiotic microbiota in gating proper immunocompetence and age-dependent immunity in plants.


Subject(s)
Arabidopsis , Microbiota , Health Status , Immunocompetence , Innate Immunity Recognition , Soil
2.
Front Plant Sci ; 14: 1080116, 2023.
Article in English | MEDLINE | ID: mdl-36818841

ABSTRACT

The management of soybean rust (SBR) caused by the obligate fungus Phakopsora pachyrhizi mostly relies on the use of synthetic fungicides, especially in areas where the disease inflicts serious yield losses. The reliance on synthetic fungicides to manage this disease has resulted in resistance of P. pachyrhizi populations to most fungicides. In this study, bacteria isolated from diverse environments were evaluated for their biocontrol potential against P. pachyrhizi using soybean detached-leaf method and on-plant in the growth chamber, greenhouse, and field. Among 998 bacterial isolates evaluated using the detached-leaf method; 58% were isolated from plant-related materials, 27% from soil, 10% from insects, and 5% from other environments. Of the isolates screened, 73 were active (they had ⪖ 75% rust reduction) with an active rate of 7.3%. From the active isolates, 65 isolates were re-tested on-plant in the growth chamber for activity confirmation. In the confirmation test, 49 bacteria isolated from plant-related materials maintained their activity with a confirmation rate of 75%. The majority of bacteria with confirmed activity belonged to the taxonomic classes Bacilli and Gammaproteobacteria (70%). Active isolates were prioritized for greenhouse and field testing based on activity in the initial screen and confirmation test. Six bacterial isolates AFS000009 (Pseudomonas_E chlororaphis), AFS032321 (Bacillus subtilis), AFS042929 (Bacillus_C megaterium), AFS065981 (Bacillus_X simplex_A), AFS090698 (Bacillus_A thuringiensis_S), and AFS097295 (Bacillus_A toyonensis) were selected from those bacteria that maintained activity in the confirmation test and were evaluated in the greenhouse, and five among them were evaluated in the field. From the Alabama field evaluation, all bacterial isolates reduced rust infection as well as azoxystrobin (Quadris® at 0.3 L/ha) used as the fungicide control (P > 0.05). Moreover, the scanning electron micrographs demonstrated evidence of antagonistic activity of AFS000009 and AFS032321 against P. pachyrhizi urediniospores. Bacterial isolates that consistently showed activity comparable to that of azoxystrobin can be improved through fermentation and formulation optimization, developed, and deployed. These bacteria strains would provide a valuable alternative to the synthetic fungicides and could play a useful role in integrated disease management programs for this disease.

3.
PLoS One ; 17(3): e0254741, 2022.
Article in English | MEDLINE | ID: mdl-35333873

ABSTRACT

In annual plants, tight coordination of successive developmental events is of primary importance to optimize performance under fluctuating environmental conditions. The recent finding of the genetic interaction of WRKY53, a key senescence-related gene with REVOLUTA, a master regulator of early leaf patterning, raises the question of how early and late developmental events are connected. Here, we investigated the developmental and metabolic consequences of an alteration of the REVOLUTA and WRKY53 gene expression, from seedling to fruiting. Our results show that REVOLUTA critically controls late developmental phases and reproduction while inversely WRKY53 determines vegetative growth at early developmental stages. We further show that these regulators of distinct developmental phases frequently, but not continuously, interact throughout ontogeny and demonstrated that their genetic interaction is mediated by the salicylic acid (SA). Moreover, we showed that REVOLUTA and WRKY53 are keys regulatory nodes of development and plant immunity thought their role in SA metabolic pathways, which also highlights the role of REV in pathogen defence. Together, our findings demonstrate how late and early developmental events are tightly intertwined by molecular hubs. These hubs interact with each other throughout ontogeny, and participate in the interplay between plant development and immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Immunity , Plant Development , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Salicylic Acid/metabolism
4.
Nat Protoc ; 16(5): 2450-2470, 2021 05.
Article in English | MEDLINE | ID: mdl-33911260

ABSTRACT

The complex structure and function of a plant microbiome are driven by many variables, including the environment, microbe-microbe interactions and host factors. Likewise, resident microbiota can influence many host phenotypes. Gnotobiotic growth systems and controlled environments empower researchers to isolate these variables, and standardized methods equip a global research community to harmonize protocols, replicate experiments and collaborate broadly. We developed two easily constructed peat-based gnotobiotic growth platforms: the FlowPot system and the GnotoPot system. Sterile peat is amenable to colonization by microbiota and supports growth of the model plant Arabidopsis thaliana in the presence or absence of microorganisms. The FlowPot system uniquely allows one to flush the substrate with water, nutrients and/or suspensions of microbiota via an irrigation port, and a mesh retainer allows for the inversion of plants for dip or vacuum infiltration protocols. The irrigation port also facilitates passive drainage, preventing root anoxia. In contrast, the GnotoPot system utilizes a compressed peat pellet, widely used in the horticultural industry. GnotoPot construction has fewer steps and requires less user handling, thereby reducing the risk of contamination. Both protocols take up to 4 d to complete with 4-5 h of hands-on time, including substrate and seed sterilization. In this protocol, we provide detailed assembly and inoculation procedures for the two systems. Both systems are modular, do not require a sterile growth chamber, and cost less than US$2 per vessel.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/microbiology , Culture Techniques/methods , Microbiota , Soil/chemistry , Germ-Free Life , Industry
5.
Nature ; 580(7805): 653-657, 2020 04.
Article in English | MEDLINE | ID: mdl-32350464

ABSTRACT

The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


Subject(s)
Arabidopsis/genetics , Arabidopsis/microbiology , Gene Regulatory Networks/genetics , Plant Components, Aerial/genetics , Plant Components, Aerial/microbiology , Plant Diseases/genetics , Plant Diseases/prevention & control , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death , Environment , Firmicutes/genetics , Firmicutes/isolation & purification , Genes, Plant/genetics , Genotype , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Homeostasis , Microbiota/genetics , Microbiota/physiology , Mutation , Phenotype , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Leaves/genetics , Plant Leaves/microbiology , Proteobacteria/genetics , Proteobacteria/isolation & purification
6.
Proc Natl Acad Sci U S A ; 115(13): E3055-E3064, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531038

ABSTRACT

Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.


Subject(s)
Arabidopsis/microbiology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Plant Diseases/microbiology , Plant Immunity/immunology , Pseudomonas syringae/genetics , Transcriptome , Arabidopsis/genetics , Bacterial Proteins/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Plant Diseases/immunology , Plant Immunity/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Pseudomonas syringae/growth & development
7.
PLoS Biol ; 15(3): e2001793, 2017 03.
Article in English | MEDLINE | ID: mdl-28350798

ABSTRACT

Feeding a growing world population amidst climate change requires optimizing the reliability, resource use, and environmental impacts of food production. One way to assist in achieving these goals is to integrate beneficial plant microbiomes-i.e., those enhancing plant growth, nutrient use efficiency, abiotic stress tolerance, and disease resistance-into agricultural production. This integration will require a large-scale effort among academic researchers, industry researchers, and farmers to understand and manage plant-microbiome interactions in the context of modern agricultural systems. Here, we identify priorities for research in this area: (1) develop model host-microbiome systems for crop plants and non-crop plants with associated microbial culture collections and reference genomes, (2) define core microbiomes and metagenomes in these model systems, (3) elucidate the rules of synthetic, functionally programmable microbiome assembly, (4) determine functional mechanisms of plant-microbiome interactions, and (5) characterize and refine plant genotype-by-environment-by-microbiome-by-management interactions. Meeting these goals should accelerate our ability to design and implement effective agricultural microbiome manipulations and management strategies, which, in turn, will pay dividends for both the consumers and producers of the world food supply.


Subject(s)
Agriculture/methods , Conservation of Natural Resources/trends , Microbiota , Plants/microbiology , Research , Food Supply , Research Design
9.
PLoS Pathog ; 7(10): e1002291, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21998587

ABSTRACT

Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection.


Subject(s)
Arabidopsis/genetics , Arabidopsis/immunology , Gene Expression Regulation, Plant , Plant Stomata/metabolism , Pseudomonas syringae/pathogenicity , Abscisic Acid/metabolism , Amino Acids/metabolism , Cloning, Molecular , Indenes/metabolism , Mutation , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity , Plant Stomata/microbiology , Salicylic Acid/metabolism
10.
Mar Pollut Bull ; 50(9): 931-44, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16054162

ABSTRACT

This study introduces a new method of tracing the history of nutrient loading in coastal oceans via delta(15)N analysis of organic nitrogen preserved in the skeleton of the massive Porites coral. Four coral cores were collected in Bali, Indonesia, from reefs exposed to high levels of fertilizers in agricultural run-off, from lagoonal corals impacted by sewage, and from a reef located 30 km offshore. Skeletal delta(15)N in the agriculturally exposed coral declined from 10.7+/-0.4 per thousand in 1970-1971, when synthetic fertilizers (-0.8 per thousand+/-0.2 per thousand) were introduced to Bali, to a depleted "anthropogenic" baseline of 3.5 per thousand+/-0.4% in the mid-1990s. delta(15)N values were negatively correlated with rainfall, suggesting that marine delta(15)N lowers during flood-bourn influxes of waste fertilizers. Reef cores exposed to untreated sewage in terrestrial discharge were enriched (7.8 and 7.3+/-0.4 per thousand), while the offshore core reflected background oceanic signals (6.2+/-0.4 per thousand). delta(15)N, N concentration, and C:N systematics indicate that the N isotopic composition of skeletal organic matter was generally well preserved over 30 years. We suggest that skeletal organic delta(15)N can serve as a recorder of past nitrogen sources. In Bali, this tracer suggests that the intensification of Western style agricultural practices since 1970 are contributing to the degradation of coastal coral reefs.


Subject(s)
Anthozoa/chemistry , Fertilizers/analysis , Nitrogen Isotopes/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Agriculture/methods , Analysis of Variance , Animals , Indonesia , Mass Spectrometry , Nitrogen Isotopes/pharmacokinetics , Time Factors , Water Pollutants, Chemical/pharmacokinetics
11.
Mar Environ Res ; 59(4): 349-66, 2005 May.
Article in English | MEDLINE | ID: mdl-15589986

ABSTRACT

Direct deposition of atmospheric nitrogen to shallow coastal embayments is usually estimated, since insufficient field measurements are available. Using Waquoit Bay (Cape Cod, MA. USA) as a case study, and a recent review of literature, we determined reasonable bounds on wet and dry inputs of inorganic and organic N. Since precipitation and wind vary daily, we explored the potential of episodic events to stimulate phytoplankton blooms. Many coastal waterbodies like Waquoit Bay are small relative to their watersheds. Nevertheless, direct deposition of NH(3), NO(3)(-), and HNO(3) is significant in the loading budget. For Waquoit Bay, direct deposition was calculated to be 7-15.5 kg total N ha(-1)yr(-1), representing 70-150% of the atmospheric N reported to reach the bay via the watershed, and 20-45% of the total N reaching the bay from all land-based sources. Episodic events were estimated to deliver up to 65 mg N m(-2)day(-1), representing a phytoplankton stock of 12.3 mg Chl m(-2), an amount unlikely to stimulate dense blooms in shallow coastal waters in the northeastern United States.


Subject(s)
Eutrophication , Nitrogen/analysis , Seawater/chemistry , Atmosphere , Environmental Monitoring , Rain
SELECTION OF CITATIONS
SEARCH DETAIL
...