Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 191(1): 95-106, 2012 May.
Article in English | MEDLINE | ID: mdl-22377631

ABSTRACT

Mediator is a modular multisubunit complex that functions as a critical coregulator of RNA polymerase II (Pol II) transcription. While it is well accepted that Mediator plays important roles in the assembly and function of the preinitiation complex (PIC), less is known of its potential roles in regulating downstream steps of the transcription cycle. Here we use a combination of genetic and molecular approaches to investigate Mediator regulation of Pol II elongation in the model eukaryote, Saccharomyces cerevisiae. We find that ewe (expression without heat shock element) mutations in conserved Mediator subunits Med7, Med14, Med19, and Med21-all located within or adjacent to the middle module-severely diminish heat-shock-induced expression of the Hsf1-regulated HSP82 gene. Interestingly, these mutations do not impede Pol II recruitment to the gene's promoter but instead impair its transit through the coding region. This implies that a normal function of Mediator is to regulate a postinitiation step at HSP82. In addition, displacement of histones from promoter and coding regions, a hallmark of activated heat-shock genes, is significantly impaired in the med14 and med21 mutants. Suggestive of a more general role, ewe mutations confer hypersensitivity to the anti-elongation drug 6-azauracil (6-AU) and one of them-med21-impairs Pol II processivity on a GAL1-regulated reporter gene. Taken together, our results suggest that yeast Mediator, acting principally through its middle module, can regulate Pol II elongation at both heat-shock and non-heat-shock genes.


Subject(s)
Gene Expression Regulation, Fungal , Mediator Complex/metabolism , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , HSP90 Heat-Shock Proteins/genetics , Mutation , Nucleosomes/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
2.
J Biol Chem ; 284(47): 32914-31, 2009 Nov 20.
Article in English | MEDLINE | ID: mdl-19759026

ABSTRACT

The chromatin structure of heat shock protein (HSP)-encoding genes undergoes dramatic alterations upon transcriptional induction, including, in extreme cases, domain-wide nucleosome disassembly. Here, we use a combination of gene knock-out, in situ mutagenesis, chromatin immunoprecipitation, and expression assays to investigate the role of histone modification complexes in regulating heat shock gene structure and expression in Saccharomyces cerevisiae. Two histone acetyltransferases, Gcn5 and Esa1, were found to stimulate HSP gene transcription. A detailed chromatin immunoprecipitation analysis of the Gcn5-containing SAGA complex (signified by Spt3) revealed its presence within the promoter of every heat shock factor 1-regulated gene examined. The occupancy of SAGA increased substantially upon heat shock, peaking at several HSP promoters within 30-45 s of temperature upshift. SAGA was also efficiently recruited to the coding regions of certain HSP genes (where its presence mirrored that of pol II), although not at others. Robust and rapid recruitment of repressive, Rpd3-containing histone deacetylase complexes was also seen and at all HSP genes examined. A detailed analysis of HSP82 revealed that both Rpd3(L) and Rpd3(S) complexes (signified by Sap30 and Rco1, respectively) were recruited to the gene promoter, yet only Rpd3(S) was recruited to its open reading frame. A consensus URS1 cis-element facilitated the recruitment of each Rpd3 complex to the HSP82 promoter, and this correlated with targeted deacetylation of promoter nucleosomes. Collectively, our observations reveal that SAGA and Rpd3 complexes are rapidly and synchronously recruited to heat shock factor 1-activated genes and suggest that their opposing activities modulate heat shock gene chromatin structure and fine-tune transcriptional output.


Subject(s)
Histone Deacetylases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism , Animals , Chromatin/chemistry , Chromatin Immunoprecipitation , HSP90 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/chemistry , Histone Acetyltransferases/metabolism , Humans , Mutagenesis , Mutation , Nucleosomes/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae/metabolism
3.
Genetics ; 172(4): 2169-84, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16452140

ABSTRACT

We report the results of a genetic screen designed to identify transcriptional coregulators of yeast heat-shock factor (HSF). This sequence-specific activator is required to stimulate both basal and induced transcription; however, the identity of factors that collaborate with HSF in governing noninduced heat-shock gene expression is unknown. In an effort to identify these factors, we isolated spontaneous extragenic suppressors of hsp82-deltaHSE1, an allele of HSP82 that bears a 32-bp deletion of its high-affinity HSF-binding site, yet retains its two low-affinity HSF sites. Nearly 200 suppressors of the null phenotype of hsp82-deltaHSE1 were isolated and characterized, and they sorted into six expression without heat-shock element (EWE) complementation groups. Strikingly, all six groups contain alleles of genes that encode subunits of Mediator. Three of the six subunits, Med7, Med10/Nut2, and Med21/Srb7, map to Mediator's middle domain; two subunits, Med14/Rgr1 and Med16/Sin4, to its tail domain; and one subunit, Med19/Rox3, to its head domain. Mutations in genes encoding these factors enhance not only the basal transcription of hsp82-deltaHSE1, but also that of wild-type heat-shock genes. In contrast to their effect on basal transcription, the more severe ewe mutations strongly reduce activated transcription, drastically diminishing the dynamic range of heat-shock gene expression. Notably, targeted deletion of other Mediator subunits, including the negative regulators Cdk8/Srb10, Med5/Nut1, and Med15/Gal11 fail to derepress hsp82-deltaHSE1. Taken together, our data suggest that the Ewe subunits constitute a distinct functional module within Mediator that modulates both basal and induced heat-shock gene transcription.


Subject(s)
Gene Expression Regulation, Fungal , Heat-Shock Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Trans-Activators/genetics , Alleles , Gene Deletion , Genes, Fungal , Genetic Complementation Test , Genetic Linkage , Mediator Complex , Mutation , Phenotype , Transcription, Genetic , beta-Galactosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...