Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Numer Method Biomed Eng ; 37(8): e3508, 2021 08.
Article in English | MEDLINE | ID: mdl-34231326

ABSTRACT

The goal of this paper is to investigate the validity of a hybrid embedded/homogenized in-silico approach for modeling perfusion through solid tumors. The rationale behind this novel idea is that only the larger blood vessels have to be explicitly resolved while the smaller scales of the vasculature are homogenized. As opposed to typical discrete or fully resolved 1D-3D models, the required data can be obtained with in-vivo imaging techniques since the morphology of the smaller vessels is not necessary. By contrast, the larger vessels, whose topology and structure is attainable noninvasively, are resolved and embedded as one-dimensional inclusions into the three-dimensional tissue domain which is modeled as a porous medium. A sound mortar-type formulation is employed to couple the two representations of the vasculature. We validate the hybrid model and optimize its parameters by comparing its results to a corresponding fully resolved model based on several well-defined metrics. These tests are performed on a complex data set of three different tumor types with heterogeneous vascular architectures. The correspondence of the hybrid model in terms of mean representative elementary volume blood and interstitial fluid pressures is excellent with relative errors of less than 4%. Larger, but less important and explicable errors are present in terms of blood flow in the smaller, homogenized vessels. We finally discuss and demonstrate how the hybrid model can be further improved to apply it for studies on tumor perfusion and the efficacy of drug delivery.


Subject(s)
Neoplasms , Pharmaceutical Preparations , Computer Simulation , Hemodynamics , Humans , Perfusion
2.
PLoS One ; 15(2): e0228443, 2020.
Article in English | MEDLINE | ID: mdl-32023318

ABSTRACT

One of the main challenges in increasing the efficacy of conventional chemotherapeutics is the fact that they do not reach cancerous cells at a sufficiently high dosage. In order to remedy this deficiency, nanoparticle-based drugs have evolved as a promising novel approach to more specific tumour targeting. Nevertheless, several biophysical phenomena prevent the sufficient penetration of nanoparticles in order to target the entire tumour. We therefore extend our vascular multiphase tumour growth model, enabling it to investigate the influence of different biophysical factors on the distribution of nanoparticles in the tumour microenvironment. The novel model permits the examination of the interplay between the size of vessel-wall pores, the permeability of the blood-vessel endothelium and the lymphatic drainage on the delivery of particles of different sizes. Solid tumours develop a non-perfused core and increased interstitial pressure. Our model confirms that those two typical features of solid tumours limit nanoparticle delivery. Only in case of small nanoparticles is the transport dominated by diffusion, and particles can reach the entire tumour. The size of the vessel-wall pores and the permeability of the blood-vessel endothelium have a major impact on the amount of delivered nanoparticles. This extended in-silico tumour growth model permits the examination of the characteristics and of the limitations of nanoparticle delivery to solid tumours, which currently complicate the translation of nanoparticle therapy to a clinical stage.


Subject(s)
Models, Theoretical , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Diffusion , Humans , Tumor Microenvironment
3.
Int J Numer Method Biomed Eng ; 35(11): e3253, 2019 11.
Article in English | MEDLINE | ID: mdl-31441222

ABSTRACT

The aim of this work is to develop a novel computational approach to facilitate the modeling of angiogenesis during tumor growth. The preexisting vasculature is modeled as a 1D inclusion and embedded into the 3D tissue through a suitable coupling method, which allows for nonmatching meshes in 1D and 3D domain. The neovasculature, which is formed during angiogenesis, is represented in a homogenized way as a phase in our multiphase porous medium system. This splitting of models is motivated by the highly complex morphology, physiology, and flow patterns in the neovasculature, which are challenging and computationally expensive to resolve with a discrete, 1D angiogenesis and blood flow model. Moreover, it is questionable if a discrete representation generates any useful additional insight. By contrast, our model may be classified as a hybrid vascular multiphase tumor growth model in the sense that a discrete, 1D representation of the preexisting vasculature is coupled with a continuum model describing angiogenesis. It is based on an originally avascular model which has been derived via the thermodynamically constrained averaging theory. The new model enables us to study mass transport from the preexisting vasculature into the neovasculature and tumor tissue. We show by means of several illustrative examples that it is indeed capable of reproducing important aspects of vascular tumor growth phenomenologically.


Subject(s)
Models, Biological , Vascular Neoplasms/pathology , Blood Vessels/physiology , Humans , Neovascularization, Pathologic , Porosity , Regional Blood Flow , Vascular Neoplasms/blood supply
4.
Comput Methods Appl Mech Eng ; 340: 657-683, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-33132456

ABSTRACT

We present a dynamic vascular tumor model combining a multiphase porous medium framework for avascular tumor growth in a consistent Arbitrary Lagrangian Eulerian formulation and a novel approach to incorporate angiogenesis. The multiphase model is based on Thermodynamically Constrained Averaging Theory and comprises the extracellular matrix as a porous solid phase and three fluid phases: (living and necrotic) tumor cells, host cells and the interstitial fluid. Angiogenesis is modeled by treating the neovasculature as a proper additional phase with volume fraction or blood vessel density. This allows us to define consistent inter-phase exchange terms between the neovasculature and the interstitial fluid. As a consequence, transcapillary leakage and lymphatic drainage can be modeled. By including these important processes we are able to reproduce the increased interstitial pressure in tumors which is a crucial factor in drug delivery and, thus, therapeutic outcome. Different coupling schemes to solve the resulting five-phase problem are realized and compared with respect to robustness and computational efficiency. We find that a fully monolithic approach is superior to both the standard partitioned and a hybrid monolithic-partitioned scheme for a wide range of parameters. The flexible implementation of the novel model makes further extensions (e.g., inclusion of additional phases and species) straightforward.

SELECTION OF CITATIONS
SEARCH DETAIL
...