Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(22): e2302521, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37221139

ABSTRACT

Interfacial instability, viz., pore formation in the lithium metal anode (LMA) during discharge leading to high impedance, current focusing induced solid-electrolyte (SE) fracture during charging, and formation/behaviour of the solid-electrolyte interphase (SEI), at the anode, is one of the major hurdles in the development of solid-state batteries (SSBs). Also, understanding cell polarization behaviour at high current density is critical to achieving the goal of fast-charging battery and electric vehicle. Herein, via in situ electrochemical scanning electron microscopy (SEM) measurements, performed with freshly deposited lithium microelectrodes on transgranularly fractured fresh Li6PS5Cl (LPSCl), the LiǀLPSCl interface kinetics are investigated beyond the linear regime. Even at relatively small overvoltages of a few mV, the LiǀLPSCl interface shows non-linear kinetics. The interface kinetics possibly involve multiple rate-limiting processes, i.e., ion transport across the SEI and SE|SEI interfaces, as well as charge transfer across the LiǀSEI interface. The total polarization resistance RP of the microelectrode interface is determined to be ≈ 0.8 Ω cm2 . It is further shown that the nanocrystalline lithium microstructure can lead to a stable LiǀSE interface via Coble creep along with uniform stripping. Also, spatially resolved lithium deposition, i.e., at grain surface flaws, grain boundaries, and flaw-free surfaces, indicates exceptionally high mechanical endurance of flaw-free surfaces toward cathodic load (>150 mA cm-2 ). This highlights the prominent role of surface defects in dendrite growth.

2.
Materials (Basel) ; 17(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38203880

ABSTRACT

Ribbed reinforcing bars (rebars) are used for the reinforcement of concrete structures. In service, they are often subjected to cyclic loading. In general, the fatigue performance of rebars may be influenced by residual stresses originating from the manufacturing process. Knowledge about residual stresses in rebars and their origin, however, is sparse. So far, residual stress measurements are limited to individual stress components, viz., to the non-ribbed part of the rebar surface. At critical points of the rebar surface, where most of the fatigue cracks originate, i.e., the foot radius regions of transverse ribs, the residual stress state has not yet been investigated experimentally. To extend the knowledge about residual stresses in rebars within the scope of this work, residual stress measurements were carried out on a rebar specimen with a diameter of 28 mm made out of the rebar steel grade B500B. In addition, numerical simulations of the TempCoreTM process were carried out. The results of the experimental investigations show tensile residual stresses in the core and the transition zone of the examined rebar specimen. Low compressive residual stresses are measured at the non-ribbed part of the rebar surface, while high compressive residual stresses are present at the tip of the transverse ribs. The results of the numerical investigations are in reasonable accordance with the experimental results. Furthermore, the numerical results indicate moderate tensile stresses occurring on the rebar surface in the rib foot radius regions of the transverse ribs. High stress gradients directly beneath the rebar surface, which are reported in the literature and which are most likely related to a thin decarburized surface layer, could be reproduced qualitatively with the numerical model developed.

SELECTION OF CITATIONS
SEARCH DETAIL
...