Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 156(18): 184802, 2022 May 14.
Article in English | MEDLINE | ID: mdl-35568545

ABSTRACT

With gates of a quantum computer designed to encode multi-dimensional vectors, projections of quantum computer states onto specific qubit states can produce kernels of reproducing kernel Hilbert spaces. We show that quantum kernels obtained with a fixed ansatz implementable on current quantum computers can be used for accurate regression models of global potential energy surfaces (PESs) for polyatomic molecules. To obtain accurate regression models, we apply Bayesian optimization to maximize marginal likelihood by varying the parameters of the quantum gates. This yields Gaussian process models with quantum kernels. We illustrate the effect of qubit entanglement in the quantum kernels and explore the generalization performance of quantum Gaussian processes by extrapolating global six-dimensional PESs in the energy domain.

2.
Phys Rev E ; 104(4-2): 045302, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34781495

ABSTRACT

Particle or energy transfer through quantum networks is determined by network topology and couplings to environments. This study examines the combined effect of topology and external couplings on the efficiency of directional quantum transfer through quantum networks. We consider a microscopic model of qubit networks coupled to external vibrations by Holstein and Peierls couplings. By treating the positions of the network sites and the site-dependent phonon frequencies as independent variables, we determine the Hamiltonian parameters corresponding to minimum transfer time by Bayesian optimization. The results show that Holstein couplings may accelerate transfer through suboptimal network configurations but cannot accelerate quantum dynamics beyond the limit of the transfer time in an optimal phonon-free configuration. By contrast, Peierls couplings distort the optimal networks to accelerate quantum transfer through configurations with less than six sites. However, the speed-up offered by Peierls couplings decreases with the network size and disappears for networks with more than seven sites. For networks with seven sites or more, Peierls couplings distort the optimal network configurations and change the mechanism of quantum transfer but do not affect the lower limit of the transfer time. The machine-learning approach demonstrated here can be applied to determine quantum speed limits in other applications.

3.
J Chem Phys ; 153(16): 164111, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33138418

ABSTRACT

We demonstrate an efficient algorithm for inverse problems in time-dependent quantum dynamics based on feedback loops between Hamiltonian parameters and the solutions of the Schrödinger equation. Our approach formulates the inverse problem as a target vector estimation problem and uses Bayesian surrogate models of the Schrödinger equation solutions to direct the optimization of feedback loops. For the surrogate models, we use Gaussian processes with vector outputs and composite kernels built by an iterative algorithm with the Bayesian information criterion (BIC) as a kernel selection metric. The outputs of the Gaussian processes are designed to model an observable simultaneously at different time instances. We show that the use of Gaussian processes with vector outputs and the BIC-directed kernel construction reduces the number of iterations in the feedback loops by, at least, a factor of 3. We also demonstrate an application of Bayesian optimization for inverse problems with noisy data. To demonstrate the algorithm, we consider the orientation and alignment of polyatomic molecules SO2 and propylene oxide (PPO) induced by strong laser pulses. We use simulated time evolutions of the orientation or alignment signals to determine the relevant components of the molecular polarizability tensors. We show that, for the five independent components of the polarizability tensor of PPO, this can be achieved with as few as 30 quantum dynamics calculations.

4.
J Chem Phys ; 153(11): 114101, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32962371

ABSTRACT

The goal of the present work is to obtain accurate potential energy surfaces (PESs) for high-dimensional molecular systems with a small number of ab initio calculations in a system-agnostic way. We use probabilistic modeling based on Gaussian processes (GPs). We illustrate that it is possible to build an accurate GP model of a 51-dimensional PES based on 5000 randomly distributed ab initio calculations with a global accuracy of <0.2 kcal/mol. Our approach uses GP models with composite kernels designed to enhance the Bayesian information content and represents the global PES as a sum of a full-dimensional GP and several GP models for molecular fragments of lower dimensionality. We demonstrate the potency of these algorithms by constructing the global PES for the protonated imidazole dimer, a molecular system with 19 atoms. We illustrate that GP models thus constructed can extrapolate the PES from low energies (<10 000 cm-1), yielding a PES at high energies (>20 000 cm-1). This opens the prospect for new applications of GPs, such as mapping out phase transitions by extrapolation or accelerating Bayesian optimization, for high-dimensional physics and chemistry problems with a restricted number of inputs, i.e., for high-dimensional problems where obtaining training data is very difficult.

5.
J Chem Theory Comput ; 16(3): 1386-1395, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31961675

ABSTRACT

Gaussian process (GP) regression has recently emerged as a powerful, system-agnostic tool for building global potential energy surfaces (PES) of polyatomic molecules. While the accuracy of GP models of PES increases with the number of potential energy points, so does the numerical difficulty of training and evaluating GP models. Here, we demonstrate an approach to improve the accuracy of global PES without increasing the number of energy points. We show that GP models of PES trained by a small number of energy points can be significantly improved by iteratively increasing the complexity of GP kernels. The composite kernels thus obtained maximize the accuracy of GP models for a given distribution of potential energy points. The accuracy can then be further improved by varying the training point distributions. We also show that GP models with composite kernels can be used for physical extrapolation of PES. We illustrate the approach by constructing the six-dimensional PES for H3O+. For the interpolation problem, we show that this algorithm produces a global six-dimensional PES in the energy range between 0 and 21 000 cm-1 with the root-mean-square error 65.8 cm-1 using only 500 randomly selected ab initio points as input. To illustrate extrapolation, we produce the PES at high energies using the energy points at low energies. We show that one can obtain an accurate global fit of the PES extending to 21 000 cm-1 based on 1500 potential energy points at energies below 10 000 cm-1.

6.
Phys Chem Chem Phys ; 21(25): 13392-13410, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31165115

ABSTRACT

This article discusses applications of Bayesian machine learning for quantum molecular dynamics. One particular formulation of quantum dynamics advocated here is in the form of a machine learning simulator of the Schrödinger equation. If combined with the Bayesian statistics, such a simulator allows one to obtain not only the quantum predictions but also the error bars of the dynamical results associated with uncertainties of inputs (such as the potential energy surface or non-adiabatic couplings) into the nuclear Schrödinger equation. Instead of viewing atoms as undergoing dynamics on a given potential energy surface, Bayesian machine learning allows one to formulate the problem as the Schrödinger equation with a non-parametric distribution of potential energy surfaces that becomes conditioned by the desired dynamical properties (such as the experimental measurements). Machine learning models of the Schrödinger equation solutions can identify the sensitivity of the dynamical properties to different parts of the potential surface, the collision energy, angular momentum, external field parameters and basis sets used for the calculations. This can be used to inform the design of efficient quantum dynamics calculations. Machine learning models can also be used to correlate rigorous results with approximate calculations, providing accurate interpolation of exact results. Finally, there is evidence that it is possible to build Bayesian machine learning models capable of physically extrapolating the solutions of the Schrödinger equation. This is particularly valuable as such models could complement common discovery tools to explore physical properties at Hamiltonian parameters not accessible by rigorous quantum calculations or experiments, and potentially be used to accelerate the numerical integration of the nuclear Schrödinger equation.

7.
Sci Rep ; 7(1): 1169, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28446754

ABSTRACT

We study two identical fermions, or two hard-core bosons, in an infinite chain and coupled to phonons by interactions that modulate their hopping as described by the Peierls/Su-Schrieffer-Heeger (SSH) model. We show that exchange of phonons generates effective nearest-neighbor repulsion between particles and also gives rise to interactions that move the pair as a whole. The two-polaron phase diagram exhibits two sharp transitions, leading to light dimers at strong coupling and the flattening of the dimer dispersion at some critical values of the parameters. This dimer (quasi)self-trapping occurs at coupling strengths where single polarons are mobile. This illustrates that, depending on the strength of the phonon-mediated interactions, the coupling to phonons may completely suppress or strongly enhance quantum transport of correlated particles.

8.
J Chem Phys ; 146(2): 024102, 2017 Jan 14.
Article in English | MEDLINE | ID: mdl-28088162

ABSTRACT

We use accurate quantum scattering calculations to elucidate the role of short-range molecule-field interactions in atom-molecule inelastic collisions and abstraction chemical reactions at low temperatures. We consider two examples: elastic and inelastic scattering of NH(Σ3) molecules with Mg(S1) atoms in a magnetic field; reactive scattering LiF + H → Li + HF in an electric field. Our calculations suggest that, for non-reactive collision systems and abstraction chemical reactions, the molecule-field interactions cannot generally be neglected at short range because the atom-molecule potential passes through zero at short range. An important exception occurs for Zeeman transitions in atom-molecule collisions at magnetic fields ≲1000 G, for which the molecule-field couplings need only be included at large ρ outside the range of the atom-molecule interaction. Our results highlight the importance of an accurate description of ρ-dependent molecule-field interactions in quantum scattering calculations on molecular collisions and chemical reactions at low temperatures.

9.
J Chem Phys ; 137(2): 024103, 2012 Jul 14.
Article in English | MEDLINE | ID: mdl-22803524

ABSTRACT

We show that the cross sections for molecule-molecule collisions in the presence of an external field can be computed efficiently using a total angular momentum basis, defined either in the body-fixed frame or in the space-fixed coordinate system. This method allows for computations with much larger basis sets than previously possible. We present calculations for (15)NH-(15)NH collisions in a magnetic field. Our results support the conclusion of the previous study that the evaporative cooling of rotationally ground (15)NH molecules in a magnetic trap has a prospect of success.

10.
Phys Chem Chem Phys ; 10(28): 4079-92, 2008 Jul 28.
Article in English | MEDLINE | ID: mdl-18612510

ABSTRACT

Collisions of molecules in a thermal gas are difficult to control. Thermal motion randomizes molecular encounters and diminishes the effects of external radiation or static electromagnetic fields on intermolecular interactions. The effects of the thermal motion can be reduced by cooling molecular gases to low temperatures. At temperatures near or below 1 K, the collision energy of molecules becomes less significant than perturbations due to external fields. At the same time, inelastic scattering and chemical reactions may be very efficient in low-temperature molecular gases. The purpose of this article is to demonstrate that collisions of molecules at temperatures below 1 K can be manipulated by external electromagnetic fields and to discuss possible applications of cold controlled chemistry. The discussion focuses on molecular interactions at cold (0.001-2 K) and ultracold (<0.001 K) temperatures and is based on both recent theoretical and experimental work. The article concludes with a summary of current challenges for theory and experiment in the research of cold molecules and cold chemistry.


Subject(s)
Chemistry , Cold Temperature , Chemical Phenomena , Models, Chemical , Time Factors
11.
J Chem Phys ; 129(3): 034112, 2008 Jul 21.
Article in English | MEDLINE | ID: mdl-18647021

ABSTRACT

We present a theory for rigorous quantum scattering calculations of probabilities for chemical reactions of atoms with diatomic molecules in the presence of an external electric field. The approach is based on the fully uncoupled basis set representation of the total wave function in the space-fixed coordinate frame, the Fock-Delves hyperspherical coordinates, and the adiabatic partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions are expanded in basis sets of hyperangular functions corresponding to different reaction arrangements, and the interactions with external fields are included in each chemical arrangement separately. We apply the theory to examine the effects of electric fields on the chemical reactions of LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that electric fields may enhance the probability of chemical reactions and modify reactive scattering resonances by coupling the rotational states of the reactants. Our preliminary results suggest that chemical reactions of polar molecules at temperatures below 1 K can be selectively manipulated with dc electric fields and microwave laser radiation.

12.
Phys Rev Lett ; 100(7): 073202, 2008 Feb 22.
Article in English | MEDLINE | ID: mdl-18352548

ABSTRACT

We show that cross sections for inelastic collisions of ultracold atoms or molecules confined by a harmonic potential have the same energy dependence as in pure 2D geometry. This indicates that chemical reactions and inelastic collisions may be suppressed in an ultracold gas under strong confinement in one dimension. We present a numerical proof of the threshold collision laws in 2D. Our results indicate that inelastic collisions in weak electromagnetic fields may be controlled by varying the orientation of the external field axis with respect to the plane of confinement.

13.
J Chem Phys ; 127(4): 044302, 2007 Jul 28.
Article in English | MEDLINE | ID: mdl-17672685

ABSTRACT

The authors present a detailed study of low-temperature collisions between CaD molecules and He atoms in superimposed electric and magnetic fields with arbitrary orientations. Electric fields do not interact with the electron spin of the molecules directly but modify their rotational structure and, consequently, the spin-rotation interactions. The authors examine molecular Stark and Zeeman energy levels as functions of the angle between the fields and show that rotating fields may induce and shift avoided crossings between the Zeeman levels of the rotationally ground and rotationally excited states of the molecule. The dynamics of molecular collisions are extremely sensitive to external fields near these avoided crossings and it is shown that molecular collisions may be controlled by varying both the strength and the relative orientation of the fields. The effects observed in this study are due to interactions of the isolated molecules with external fields so the conclusions should be relevant for collisions of molecules with other atoms or collisions of molecules with each other. This study demonstrates that electric fields may be used to enhance or suppress spin-rotation interactions in molecules. The spin-rotation interactions induce nonadiabatic couplings between states of different total spins in systems of two open-shell species and it is suggested that electric fields might be used for controlling nonadiabatic spin transitions and spin-forbidden chemical reactions of cold molecules in a magnetic trap.

14.
J Chem Phys ; 125(19): 194311, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129107

ABSTRACT

We use rigorous quantum mechanical theory to study collisions of magnetically oriented cold molecules in the presence of superimposed electric and magnetic fields. It is shown that electric fields suppress the spin-rotation interaction in rotationally excited 2Sigma molecules and inhibit rotationally elastic and inelastic transitions accompanied by electron spin reorientation. We demonstrate that electric fields enhance collisional spin relaxation in 3Sigma molecules and discuss the mechanisms for electric field control of spin-changing transitions in collisions of rotationally excited CaD(2Sigma) and ND(3Sigma) molecules with helium atoms. The propensities for spin depolarization in the rotationally excited molecules are analyzed based on the calculations of collision rate constants at T=0.5 K.

15.
Phys Rev Lett ; 97(8): 083201, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-17026301

ABSTRACT

We present a theoretical study of atom-molecule collisions in superimposed electric and magnetic fields and show that dynamics of electronic spin relaxation in molecules at temperatures below 0.5 K can be manipulated by varying the strength and the relative orientation of the applied fields. The mechanism of electric field control of Zeeman transitions is based on an intricate interplay between intramolecular spin-rotation couplings and molecule-field interactions. We suggest that electric fields may affect chemical reactions through inducing nonadiabatic spin transitions and facilitate evaporative cooling of molecules in a magnetic trap.

16.
Phys Rev Lett ; 96(12): 123202, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16605902

ABSTRACT

It is demonstrated that elastic collisions of ultracold atoms forming a heteronuclear collision complex can be manipulated by laboratory practicable dc electric fields. The mechanism of electric field control is based on the interaction of the instantaneous dipole moment of the collision pair with external electric fields. It is shown that this interaction is dramatically enhanced in the presence of a p-wave shape or Feshbach scattering resonance near the collision threshold, which leads to novel electric-field-induced Feshbach resonances.

17.
J Chem Phys ; 123(10): 101101, 2005 Sep 08.
Article in English | MEDLINE | ID: mdl-16178581

ABSTRACT

Based on measurements of the Zeeman relaxation in a cold gas of (3)He [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09 cm(-1) at interatomic distances larger than the turning point for collisions at 0.8 K, including the region of the van der Waals interaction minima.

18.
J Chem Phys ; 122(9): 094307, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15836128

ABSTRACT

A detailed analysis of the He-NH((3)Sigma(-)) van der Waals complex is presented. We discuss ab initio calculations of the potential energy surface and fitting procedures with relevance to cold collisions, and we present accurate calculations of bound energy levels of the triatomic complex as well as collisional properties of NH molecules in a buffer gas of (3)He. The influence of the external magnetic field used to trap the NH molecules and the effect of the atom-molecule interaction potential on the collisionally induced Zeeman relaxation are explored. It is shown that minute variations of the interaction potential due to different fitting procedures may alter the Zeeman relaxation rate at ultralow temperatures by as much as 50%.

19.
Phys Rev Lett ; 94(1): 013202, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15698078

ABSTRACT

Angular momentum transfer is expected to occur rapidly in collisions of atoms in states of nonzero angular momenta due to the large torque of angular forces. We show that despite the presence of internal angular momenta transition metal atoms interact in collisions with helium effectively as spherical atoms and angular momentum transfer is slow. Thus, magnetic trapping and sympathetic cooling of transition metal atoms to ultracold temperatures should be readily achievable. Our results open up new avenues of research with a broad class of ultracold atoms.

20.
J Chem Phys ; 120(5): 2296-307, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-15268368

ABSTRACT

A theory for quantum-mechanical calculations of cross sections for atom-molecule and molecular collisions in a magnetic field is presented. The formalism is based on the representation of the wave function as an expansion in a fully uncoupled space-fixed basis. The systems considered include 1S-atom-2Sigma-molecule, 1S-atom-3Sigma-molecule, 2Sigma-molecule-2Sigma-molecule, and 3Sigma-molecule-3Sigma-molecule. The theory is used to elucidate the mechanisms for collisionally induced spin depolarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...