Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 288(2): 582-599, 2021 01.
Article in English | MEDLINE | ID: mdl-32352209

ABSTRACT

Human guanylate-binding protein 1 (hGBP-1) shows a dimer-induced acceleration of the GTPase activity yielding GDP as well as GMP. While the head-to-head dimerization of the large GTPase (LG) domain is well understood, the role of the rest of the protein, particularly of the GTPase effector domain (GED), in dimerization and GTP hydrolysis is still obscure. In this study, with truncations and point mutations on hGBP-1 and by means of biochemical and biophysical methods, we demonstrate that the intramolecular communication between the LG domain and the GED (LG:GED) is crucial for protein dimerization and dimer-stimulated GTP hydrolysis. In the course of GTP binding and γ-phosphate cleavage, conformational changes within hGBP-1 are controlled by a chain of amino acids ranging from the region near the nucleotide-binding pocket to the distant LG:GED interface and lead to the release of the GED from the LG domain. This opening of the structure allows the protein to form GED:GED contacts within the dimer, in addition to the established LG:LG interface. After releasing the cleaved γ-phosphate, the dimer either dissociates yielding GDP as the final product or it stays dimeric to further cleave the ß-phosphate yielding GMP. The second phosphate cleavage step, that is, the formation of GMP, is even more strongly coupled to structural changes and thus more sensitive to structural restraints imposed by the GED. Altogether, we depict a comprehensive mechanism of GTP hydrolysis catalyzed by hGBP-1, which provides a detailed molecular understanding of the enzymatic activity connected to large structural rearrangements of the protein. DATABASE: Structural data are available in RCSB Protein Data Bank under the accession numbers: 1F5N, 1DG3, 2B92.


Subject(s)
GTP-Binding Proteins/chemistry , Guanosine Diphosphate/chemistry , Guanosine Triphosphate/chemistry , Protein Interaction Domains and Motifs , Binding Sites , Biocatalysis , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanosine 5'-O-(3-Thiotriphosphate)/chemistry , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Guanosine Diphosphate/metabolism , Guanosine Triphosphate/metabolism , Humans , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
2.
Biochemistry ; 57(42): 6045-6049, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30260627

ABSTRACT

Fibronectin is a large multidomain protein of the extracellular matrix that harbors two heparin binding sites, Hep-I and Hep-II, which support the heparin-dependent adhesion of melanoma and neuroblastoma cells [Barkalow, F. J. B., and Schwarzbauer, J. E. (1991) J. Biol. Chem. 266, 7812-7818; McCarthy, J. B., et al. (1988) Biochemistry 27, 1380-1388; Drake, S. L., et al. (1993) J. Biol. Chem. 268, 15859-15867]. The stronger heparin/HS binding site on fibronectin, Hep-II, spans fibronectin type III domains 12-14. Previous site-directed mutagenesis, nuclear magnetic resonance (NMR) chemical shift perturbation, and crystallographic structural studies all agree that the main heparin binding site is located on the surface of fibronectin type III domain 13 [Ingham, K. C., et al. (1993) Biochemistry 32, 12548-12553; Sharma, A., et al. (1999) EMBO J. 18, 1468-1479; Sachchidanand, L. O., et al. (2002) J. Biol. Chem. 277, 50629-50635]. However, the "synergy site" for heparin binding located on fibronectin type III domain 14 remained elusive because the actual binding sites could not be identified. Using NMR spectroscopy and isothermal titration calorimetry, we show here that heparin is able to bind to a cationic 'cradle' of fibronectin type III domain 14 formed by the PRARI sequence, which is involved in the integrin α4ß1 interaction [Mould, A. P., and Humphries, M. J. (1991) EMBO J. 10, 4089-4095], and to the flexible loop comprising residues KNNQKSE between the last two ß-strands, D and E, of FN14. Our data reveal that the individual FN14 domain binds to the sulfated sugars Dp8 and Reviparin with affinities similar to those of the individual domain FN13 [Breddin, H. K. (2002) Expert Opin. Pharmacother. 3, 173-182]. It is noteworthy that by introduction of the last ß-strand of FN13 and the linker region between FN type III domains 13 and 14, the perturbation of NMR chemical shifts by heparin is significantly reduced, especially at the PRARI site. This indicates that the Hep-II binding site of fibronectin is mainly located on FN13 and the synergistic binding site on FN14 involves only the KNNQKSE sequence.


Subject(s)
Fibronectin Type III Domain , Fibronectins/chemistry , Heparin/chemistry , Binding Sites , Fibronectins/metabolism , Heparin/metabolism , Humans , Magnetic Resonance Spectroscopy , Protein Binding , Protein Structure, Secondary
3.
Chembiochem ; 19(2): 153-158, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29139594

ABSTRACT

3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase was investigated in different organic cosolvents by means of kinetic and calorimetric measurements, molecular dynamics simulations, and small-angle X-ray scattering. The combined experimental and theoretical techniques were essential to complement each other's limitations in the investigation of the complex interaction pattern between the enzyme, different solvent types, and concentrations. In this way, the underlying mechanisms for the loss of enzyme activity in different water-miscible solvents could be elucidated. These include direct inhibitory effects onto the active center and structural distortions.


Subject(s)
Acetonitriles/metabolism , Acyl Coenzyme A/metabolism , Alcohols/metabolism , Ionic Liquids/metabolism , Acetonitriles/chemistry , Acyl Coenzyme A/chemistry , Alcohols/chemistry , Calorimetry , Ionic Liquids/chemistry , Kinetics , Molecular Dynamics Simulation , Scattering, Small Angle , Solvents/chemistry , Solvents/metabolism , Sulfolobus solfataricus/enzymology , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...