Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Front Med (Lausanne) ; 11: 1416319, 2024.
Article in English | MEDLINE | ID: mdl-38962744

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) was established as a treatment for severe cardiac or respiratory disease. Intra-device clot formation is a common risk. This is based on complex coagulation phenomena which are not yet sufficiently understood. The objective was the development and validation of a methodology to capture the key properties of clots deposed in membrane lungs (MLs), such as clot size, distribution, burden, and composition. One end-of-therapy PLS ML was examined. Clot detection was performed using multidetector computed tomography (MDCT), microcomputed tomography (µCT), and photography of fiber mats (fiber mat imaging, FMI). Histological staining was conducted for von Willebrand factor (vWF), platelets (CD42b, CD62P), fibrin, and nucleated cells (4', 6-diamidino-2-phenylindole, DAPI). The three imaging methods showed similar clot distribution inside the ML. Independent of the imaging method, clot loading was detected predominantly in the inlet chamber of the ML. The µCT had the highest accuracy. However, it was more expensive and time consuming than MDCT or FMI. The MDCT detected the clots with low scanning time. Due to its lower resolution, it only showed clotted areas but not the exact shape of clot structures. FMI represented the simplest variant, requiring little effort and resources. FMI allowed clot localization and calculation of clot volume. Histological evaluation indicated omnipresent immunological deposits throughout the ML. Visually clot-free areas were covered with leukocytes and platelets forming platelet-leukocyte aggregates (PLAs). Cells were embedded in vWF cobwebs, while vWF fibers were negligible. In conclusion, the presented methodology allowed adequate clot identification and histological classification of possible thrombosis markers such as PLAs.

2.
Front Immunol ; 15: 1339235, 2024.
Article in English | MEDLINE | ID: mdl-38449869

ABSTRACT

Neutrophil extracellular traps (NETs) have recently emerged as a potential link between inflammation, immunity, and thrombosis, as well as other coagulation disorders which present a major challenge in the context of extracorporeal membrane oxygenation (ECMO). By examining blood from ECMO patients for NETs and their precursors and correlating them with clinical and laboratory biomarkers of coagulation and inflammation, this study aims to evaluate the association between the presence of NETs in the bloodstream of ECMO patients and the development of potentially severe coagulation disorders during ECMO therapy. Therefore, blood samples were collected from healthy volunteers (n=13) and patients receiving veno-venous (VV) ECMO therapy (n=10). To identify NETs and their precursors, DNA and myeloperoxidase as well as granulocyte marker CD66b were visualized simultaneously by immunofluorescence staining in serial blood smears. Differentiation of DNA-containing objects and identification of NETs and their precursors was performed semiautomatically by a specific algorithm using the shape and size of DNA staining and the intensity of MPO and CD66b signal. Neutrophil extracellular traps and their precursors could be detected in blood smears from patients requiring VV ECMO. Compared to volunteers, ECMO patients presented significantly higher rates of NETs and NET precursors as well as an increased proportion of neutrophil granulocytes in all detected nucleated cells. A high NET rate prior to the initiation of ECMO therapy was associated with both increased IL-6 and TNF-α levels as an expression of a high cytokine burden. These patients with increased NET release also presented an earlier and significantly more pronounced decrease in platelet counts and ATIII activity following initiation of therapy compared with patients with less elevated NETs. These findings provide further indications for the development of immune-mediated acquired thrombocytopenia in ECMO patients.


Subject(s)
Extracellular Traps , Extracorporeal Membrane Oxygenation , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , Extracorporeal Membrane Oxygenation/adverse effects , DNA , Inflammation
3.
Multidiscip Respir Med ; 18(1): 923, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-37908973

ABSTRACT

Background: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. Methods: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. Results: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10,000 Pa and a median critical strain of 4%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). Conclusions: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.

4.
Artif Organs ; 47(11): 1720-1731, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37525949

ABSTRACT

BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/µL vs. 5.9 (5.4/6.3) ng/µL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.


Subject(s)
Cell-Free Nucleic Acids , Extracorporeal Membrane Oxygenation , Thrombosis , Humans , Middle Aged , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Clinical Relevance , Blood Coagulation , Thrombosis/etiology , Retrospective Studies
5.
Technol Health Care ; 30(1): 283-289, 2022.
Article in English | MEDLINE | ID: mdl-34806640

ABSTRACT

BACKGROUND: Due to their corrugated profile, dragonfly wings have special aerodynamic characteristics during flying and gliding. OBJECTIVE: The aim of this study was to create a realistic 3D model of a dragonfly wing captured with a high-resolution micro-CT. To represent geometry changes in span and chord length and their aerodynamic effects, numerical investigations are carried out at different wing positions. METHODS: The forewing of a Camacinia gigantea was captured using a micro-CT. After the wing was adapted an error-free 3D model resulted. The wing was cut every 5 mm and 2D numerical analyses were conducted in Fluent® 2020 R2 (ANSYS, Inc., Canonsburg, PA, USA). RESULTS: The highest lift coefficient, as well as the highest lift-to-drag ratio, resulted at 0 mm and an angle of attack (AOA) of 5∘. At AOAs of 10∘ or 15∘, the flow around the wing stalled and a Kármán vortex street behind the wing becomes visible. CONCLUSIONS: The velocity is higher on the upper side of the wing compared to the lower side. The pressure acts vice versa. Due to the recirculation zones that are formed in valleys of the corrugation pattern the wing resembles the form of an airfoil.


Subject(s)
Odonata , Animals , Biomechanical Phenomena , Flight, Animal , Models, Biological , Wings, Animal , X-Ray Microtomography
6.
ASAIO J ; 66(8): 922-928, 2020 08.
Article in English | MEDLINE | ID: mdl-32740353

ABSTRACT

Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (µCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and µCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the µCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and µCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.


Subject(s)
Extracorporeal Membrane Oxygenation/adverse effects , Image Processing, Computer-Assisted/methods , Oxygenators, Membrane/adverse effects , Thrombosis/diagnostic imaging , X-Ray Microtomography/methods , Cross-Sectional Studies , Feasibility Studies , Humans , Thrombosis/etiology
7.
Sci Rep ; 10(1): 1644, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015398

ABSTRACT

The use of the double-cone (DC) coil in transcranial magnetic stimulation (TMS) is promoted with the notion that the DC coil enables stimulation of deeper brain areas in contrast to conventional figure-of-8 (Fo8) coils. However, systematic comparisons of these two coil types with respect to the spatial distribution of the magnetic field output and also to the induced activity in superficial and deeper brain areas are limited. Resting motor thresholds of the left and right first dorsal interosseous (FDI) and tibialis anterior (TA) were determined with the DC and the Fo8 coil in 17 healthy subjects. Coils were orientated over the corresponding motor area in an angle of 45 degrees for the hand area with the handle pointing in posterior direction and in medio-lateral direction for the leg area. Physical measurements were done with an automatic gantry table using a Gaussmeter. Resting motor threshold was higher for the leg area in contrast to the hand area and for the Fo8 in contrast to the DC coil. Muscle by coil interaction was also significant providing higher differences between leg and hand area for the Fo8 (about 27%) in contrast to the DC coil (about 15%). Magnetic field strength was higher for the DC coil in contrast to the Fo8 coil. The DC coil produces a higher magnetic field with higher depth of penetration than the figure of eight coil.

8.
Artif Organs ; 43(11): 1065-1076, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31192471

ABSTRACT

Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.


Subject(s)
Extracorporeal Membrane Oxygenation/adverse effects , Thrombosis/etiology , von Willebrand Factor/analysis , Adult , Aged , Blood Coagulation , Critical Illness/therapy , Equipment Design , Extracorporeal Membrane Oxygenation/instrumentation , Female , Humans , Male , Middle Aged , Oxygenators, Membrane/adverse effects , Platelet Activation
9.
PLoS One ; 13(6): e0198392, 2018.
Article in English | MEDLINE | ID: mdl-29856834

ABSTRACT

Over the past decade, veno-venous extracorporeal membrane oxygenation (vvECMO) has been increasingly utilized in respiratory failure in patients. This study presents our institution´s experience focusing on the life span of ECMO systems reflecting the performance of a particular system. A retrospective review of our ECMO database identified 461 adult patients undergoing vvECMO (2010-2017). Patients that required more than one system and survived the first exchange >24 hours (n = 139) were included. Life span until the first exchange and exchange criteria were analyzed for all systems (PLS, Cardiohelp HLS-set, both Maquet Cardiopulmonary, Rastatt, Germany; Deltastream/Hilite7000LT, iLA-activve, Xenios/NovaLung, Heilbronn, Germany; ECC.O5, LivaNova, Mirandola, Italy). At our ECMO center, the frequency of a system exchange was 30%. The median (IQR) life span was 9 (6-12) days. There was no difference regarding the different systems (p = 0.145 and p = 0.108, respectively). However, the Deltastream systems were exchanged more frequently due to elective technical complications (e. g. worsened gas transfer, development of coagulation disorder, increased bleedings complications) compared to the other exchanged systems (p = 0.013). In summary, the used ECMO systems are safe and effective for acute respiratory failure. There is no evidence for the usage of a specific system. Only the increased predictability of an imminent exchange preferred the usage of a Deltastream system. However, the decision to use a particular system should not depend solely on the possible criteria for an exchange.


Subject(s)
Equipment Failure Analysis , Equipment Failure , Extracorporeal Membrane Oxygenation/instrumentation , Oxygenators, Membrane , Adult , Equipment Failure/statistics & numerical data , Equipment Failure Analysis/statistics & numerical data , Female , Humans , Male , Oxygenators, Membrane/classification , Oxygenators, Membrane/standards , Oxygenators, Membrane/statistics & numerical data , Primary Health Care/statistics & numerical data , Respiratory Distress Syndrome/therapy , Retrospective Studies , Severity of Illness Index , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...