Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 152: 113120, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35653889

ABSTRACT

Circular peptides are attractive lead compounds for drug development; this study investigates the immunomodulatory effects of defined root powder extracts and isolated peptides (called cyclotides) from Carapichea ipecacuanha (Brot.) L. Andersson ('ipecac'). Changes in the viability, proliferation and function of activated human primary T cells were analysed using flow cytometry-based assays. Three distinct peptide-enriched extracts of pulverised ipecac root material were prepared via C18 solid-phase extraction and analysed by reversed-phase HPLC and mass spectrometry. These extracts induced caspase 3/7 dependent apoptosis, thus leading to a suppressed proliferation of activated T cells and a reduction of the number of cells in the G2 phase. Furthermore, the stimulated T cells had a lower activation potential and a reduced degranulation capacity after treatment with ipecac extracts. Six different cyclotides were isolated from C. ipecacuanha and an T cell proliferation inhibiting effect was determined. Furthermore, the degranulation capacity of the T cells was diminished specifically by some cyclotides. In contrast to kalata B1 and its analog T20K, secretion of IL-2 and IFN- γ was not affected by any of the caripe cyclotides. The findings add to our increased understanding of the immunomodulating effects of cyclotides, and may provide a basis for the use of ipecac extracts for immunomodulation in conditions associated with an exessive immune responses.


Subject(s)
Cyclotides , Cell Proliferation , Cyclotides/pharmacology , Humans , Ipecac/pharmacology , Lymphocyte Activation , Lymphocytes , Peptides, Cyclic
2.
Chem Biodivers ; 19(2): e202100646, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34982514

ABSTRACT

Multidrug resistance is a significant drawback in malaria treatment, and mutations in the active sites of the many critical antimalarial drug targets have remained challenging. Therefore, this has necessitated the global search for new drugs with new mechanisms of action. Plasmodium falciparum lactate dehydrogenase (pfLHD), a glycolytic enzyme, has emerged as a potential target for developing new drugs due to the parasite reliance on glycolysis for energy. Strong substrate-binding is required in pfLDH enzymatic catalysis; however, there is a lack of information on small molecules' inhibitory mechanism bound to the substrate-binding pocket. Therefore, this study investigated a potential allosteric inhibition of pfLDH by targeting the substrate-binding site. The structural and functional behaviour of madecassic acid (MA), the most promising among the six triterpenes bound to pfLDH, were unravelled using molecular dynamic simulations at 300 ns to gain insights into its mechanism of binding and inhibition and chloroquine as a standard drug. The docking studies identified that the substrate site has the preferred position for the compounds even in the absence of a co-factor. The bound ligands showed comparably higher binding affinity at the substrate site than at the co-factor site. Mechanistically, a characteristic loop implicated in the enzyme catalytic activity was identified at the substrate site. This loop accommodates key interacting residues (LYS174, MET175, LEU177 and LYS179) pivotal in the MA binding and inhibitory action. The MA-bound pfLHD average RMSD (1.60 Å) relative to chloroquine-bound pfLHD RMSD (2.00 Å) showed higher stability for the substrate pocket, explaining the higher binding affinity (-33.40 kcal/mol) observed in the energy calculations, indicating that MA exhibited profound inhibitory activity. The significant pfLDH loop conformational changes and the allostery substrate-binding landscape suggested inhibiting the enzyme function, which provides an avenue for designing antimalarial compounds in the future studies of pfLDH protein as a target.


Subject(s)
Antimalarials , Combretum , Triterpenes , Antimalarials/chemistry , Antimalarials/pharmacology , Combretum/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Plasmodium falciparum , Triterpenes/pharmacology
3.
Front Pharmacol ; 12: 641225, 2021.
Article in English | MEDLINE | ID: mdl-34025412

ABSTRACT

The genus Eriosema (Fabaceae) includes approximately 150 species widely distributed across tropical and subtropical regions of the world (Africa, Neotropics, Asia and Australia). Throughout these regions, several species are used since centuries in different traditional medicinal systems, while others are used as food or food supplement. The present review attempts to critically summarize current information concerning the uses, phytochemistry and pharmacology of the Eriosema genus and to evaluate the therapeutic potential. The information published in English and French (up to September 2020) on ethnopharmacology or traditional uses, chemistry, pharmacology and toxicology of Eriosema genus was collected from electronic databases [SciFinder, PubMed, Google, Google Scholar, Scopus, Web of Science, Prelude Medicinal Plants-http://www.ethnopharmacologia.org/recherche-dans-prelude/?plant, The Plant List (http://www.theplantlist.org/), POWO (http://powo.science.kew.org/) and IUCN Red List Categories (https://www.iucnredlist.org/)], conference proceedings, books, M.Sc. and Ph.D. dissertations. The information retrieved on the ethnomedicinal indications of Eriosema genus allowed to list 25 species (∼16.6% of the genus). The majority of uses is recorded from Africa. Phytochemical analyses of 8 species led to the identification and/or isolation of 107 compounds, with flavonoids (69.2%), chromones (7.5%) and benzoic acid derivatives (3.7%) as the main chemical classes. Pharmacological investigations with crude extracts and isolated compounds showed a broad range of activities including aphrodisiac, estrogenic, anti-osteoporosis, hypolipidemic, anti-diabetic, anti-diarrheal, anti-microbial, anti-oxidant, anthelmintic, anti-cancer, and acetylcholinesterase inhibitory activities. Despite the low number of Eriosema species tested, there is convincing evidence in vitro and in vivo studies validating some traditional and ethnobotanical uses. However, the utility of several of the described uses has not yet been confirmed in pharmacological studies. Reviewed data could serve as a reference tool and preliminary information for advanced research on Eriosema species.

4.
J Complement Integr Med ; 18(3): 535-544, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33818035

ABSTRACT

OBJECTIVES: There is a growing body of evidence indicating the potential of culinary herbs and spices to decrease the incidence of several chronic diseases or conditions. Because of this, the WHO recommends their regular consumption. In the Cameroonian culinary practices, "Nkui" is a famous dish made from a mixture of 10 spices. In our previous study, the ethanolic extract of this mixture exhibited promising estrogenic properties. Thus, this study aimed to evaluate its protective effects on some menopause-related cardiovascular and bone disorders. METHODS: For this purpose, a post-menopause-like model (ovariectomized rats) has been used. Animals were orally treated with the "Nkui" extract for 60 days. The investigation focused on the oxidative stress status, endothelial function (NO bioavailability), lipid profile, and bone mass, biochemical (calcium and inorganic phosphorus contents, serum alkaline phosphatase activity) and histomorphological features. RESULTS: The extract regulated lipid metabolism in a way to prevent accumulation of abdominal fat, gain in body weight and increased atherogenic indexes induced by ovariectomy. It prevented menopause-related low levels of nitric oxide and oxidative stress damage by increasing superoxide dismutase and catalase activities, while reducing glutathione and malondialdehyde levels in the heart and aorta. Moreover, it prevented ovariectomy-induced bone mass loss, bone marrow disparities and the disorganization of the trabecular network. It also increased femur calcium and inorganic phosphorus contents. CONCLUSIONS: These results suggest that a regular consumption of "Nkui" may have health benefits on cardiovascular system and osteoporosis, major health issues associated with menopause.


Subject(s)
Cardiovascular System , Plant Extracts , Animals , Estrogens , Female , Humans , Ovariectomy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Rats , Rats, Wistar
5.
Molecules ; 25(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998226

ABSTRACT

The tree fern Metaxya rostrata (Kunth) C. Presl is common in the rainforests of Central and South America, where suspensions of the dried rhizome are traditionally used to treat intestinal diseases. Two compounds from this plant, 2-deprenyl-rheediaxanthone B (XB) and 2-deprenyl-7-hydroxy-rheediaxanthone B (OH-XB), have been shown to be biologically highly active against colorectal cancer (CRC) cells in previous studies. The current investigation resulted in the isolation of the previously undescribed methylated xanthones 2-deprenyl-6-O-methyl-7-hydroxy-rheediaxanthone B, 2-deprenyl-5-O-methyl-7-methoxy-rheediaxanthone B, 2-deprenyl-5-O-methyl- 7-hydroxy-rheediaxanthone B and 2-deprenyl-7-methoxy-rheediaxanthone B. All compounds were isolated by column chromatography, structures were elucidated by one- and two-dimensional NMR-experiments and the identities of the compounds were confirmed by LC-HRMS. In logarithmically growing SW480 CRC cell cultures, cytotoxicity by neutral red uptake and MTT assays as well as caspase activation was analyzed. Cellular targets were examined by Western blot, and topoisomerase I (topo I) inhibition potential was tested. Comparing the structure-activity relationship with XB and OH-XB, the monomethylated derivatives showed qualitatively similar effects/mechanisms to their nonmethylated analogues, while dimethylation almost abolished the activity. Inhibition of topo I was dependent on the presence of an unmethylated 7-OH group.


Subject(s)
Colorectal Neoplasms/pathology , Ferns/chemistry , Plant Roots/chemistry , Xanthones/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Caspases/metabolism , Cell Cycle Proteins/metabolism , Cell Death/drug effects , Cell Line, Tumor , DNA Topoisomerases, Type I/metabolism , Humans , Methylation , Proton Magnetic Resonance Spectroscopy , Topoisomerase Inhibitors/pharmacology , Xanthones/chemistry
6.
Planta Med ; 86(15): 1048-1049, 2020 10.
Article in English | MEDLINE | ID: mdl-33049790
7.
Sci Rep ; 10(1): 11707, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678125

ABSTRACT

Neurodegenerative disorders (ND) like Alzheimer's (AD), Parkinson's (PD), Huntington's or Prion diseases share similar pathological features. They are all age dependent and are often associated with disruptions in analogous metabolic processes such as protein aggregation and oxidative stress, both of which involve metal ions like copper, manganese and iron. Bush and Tanzi proposed 2008 in the 'metal hypothesis of Alzheimer's disease' that a breakdown in metal homeostasis is the main cause of NDs, and drugs restoring metal homeostasis are promising novel therapeutic strategies. We report here that metallothionein (MT), an endogenous metal detoxifying protein, is increased in young amyloid ß (Aß) expressing Caenorhabditis elegans, whereas it is not in wild type strains. Further MT induction collapsed in 8 days old transgenic worms, indicating the age dependency of disease outbreak, and sharing intriguing parallels to diminished MT levels in human brains of AD. A medium throughput screening assay method was established to search for compounds increasing the MT level. Compounds known to induce MT release like progesterone, ZnSO4, quercetin, dexamethasone and apomorphine were active in models of AD and PD. Thioflavin T, clioquinol and emodin are promising leads in AD and PD research, whose mode of action has not been fully established yet. In this study, we could show that the reduction of Aß and α-synuclein toxicity in transgenic C. elegans models correlated with the prolongation of MT induction time and that knockdown of MT with RNA interference resulted in a loss of bioactivity.


Subject(s)
Aging/metabolism , Amyloid beta-Peptides/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Metallothionein/metabolism , alpha-Synuclein/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Animals, Genetically Modified , Benzothiazoles/administration & dosage , Benzothiazoles/pharmacology , Clioquinol/administration & dosage , Clioquinol/pharmacology , Disease Models, Animal , Emodin/administration & dosage , Emodin/pharmacology , Gene Knockdown Techniques , Homeostasis/drug effects , Metallothionein/genetics , Metals/metabolism , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Quercetin/administration & dosage , Quercetin/pharmacology , Signal Transduction/drug effects
8.
Molecules ; 25(9)2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32365473

ABSTRACT

The health effects of plant phenolics in vegetables and other food and the increasing evidence of the preventive potential of flavonoids in "Western Diseases" such as cancer, neurodegenerative diseases and others, have gained enormous interest. This prompted us to investigate the effects of 20 different flavonoids of the groups of flavones, flavonols and flavanones in 3D in vitro systems to determine their ability to inhibit the formation of circular chemorepellent induced defects (CCIDs) in monolayers of lymph- or blood-endothelial cells (LECs, BECs; respectively) by 12(S)-HETE, which is secreted by SW620 colon cancer spheroids. Several compounds reduced the spheroid-induced defects of the endothelial barriers. In the SW620/LEC model, apigenin and luteolin were most active and acacetin, nepetin, wogonin, pinocembrin, chrysin and hispidulin showed weak effects. In the SW620/BEC model acacetin, apigenin, luteolin, wogonin, hispidulin and chrysin exhibited weak activity.


Subject(s)
Endothelium, Vascular/drug effects , Flavonoids/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Coculture Techniques , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Flavonoids/chemistry , Humans , Neovascularization, Pathologic/metabolism , Spheroids, Cellular
9.
Planta Med ; 86(15): 1073-1079, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32023632

ABSTRACT

We recently isolated the prenylated xanthones 2-deprenyl-rheediaxanthone B (XB) and 2-deprenyl-7-hydroxy-rheediaxanthone B (OH-XB) from the South American tree fern Metaxya rostrata. This study explores the mechanisms underlying the FoxM1 downregulation induced by both xanthones. Analysis of cell viability and cell-death induction in SW480, HCT116, Caco-2, DLD1 and HT29 exposed to xanthones found cell-loss and activation of caspase in all cell lines except HT29 that do not have high FoxM1 protein levels. To determine the cellular mechanism of xanthone-induced FoxM1 loss, protein stability was analyzed by cycloheximide-chase experiments and showed reduction of FoxM1 stability by XB but not OH-XB. Destabilization was prevented by inhibiting proteasome activity using MG-132 and moderately by the lysosomal inhibitor bafilomycin A1 (baf A1). OH-XB had a stronger impact than XB on FoxM1 mRNA expression by qRT-PCR, and MG-132 positively affected FoxM1 protein level in OH-XB exposed cells even though no decrease in protein abundance had been induced by the xanthone. Additionally, the compound inhibited topoisomerase I causing DNA DSB and early cell cycle arrest. This may reduce FoxM1 gene expression, which may in turn compromise DNA repair and enhance xanthone-induced cell death. With regard to xanthone-induced cell death, MG-132 protected cultures from cell loss induced by both compounds, and baf A1 was active against these XB-induced effects. In summary, both destabilization of FoxM1 protein and topoisomerase I inhibition contribute to both XB and OH-XB cytotoxic activity albeit at different ratios.


Subject(s)
DNA Topoisomerases, Type I , Xanthones , Caco-2 Cells , Cell Cycle Checkpoints , Cell Line, Tumor , Ferns/chemistry , Forkhead Box Protein M1/genetics , Humans , Xanthones/toxicity
10.
J Ethnopharmacol ; 247: 112203, 2020 Jan 30.
Article in English | MEDLINE | ID: mdl-31472271

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Combretum racemosum showed activity in previous ethnopharmacological investigations of some Combretum species used in malaria treatment in parts of West Africa. AIM OF THE STUDY: This study aimed at confirming the antimalarial potential of this plant by an activity-guided isolation of its active principles. MATERIALS AND METHODS: A crude methanolic leaf extract of Combretum racemosum and fractions thereof obtained by partition with chloroform and n-butanol were investigated for antiplasmodial activity against chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Repeated chromatographic separations were conducted on the chloroform fraction to isolate bioactive compounds for further tests on antiplasmodial activity. The characterization of the isolated substances was performed by applying NMR- and MS-techniques (ESI-MS, HR-ESIMS, 1D and 2D NMR). RESULTS: The chloroform fraction (D10: IC50 = 33.8 ±â€¯1.5 µg/mL and W2: IC50 = 27.8 ±â€¯2.9 µg/mL) exhibited better antiplasmodial activity than the n-butanol fraction (D10: IC50 = 78.1 ±â€¯7.3 µg/mL and W2: IC50 = 78 ±â€¯15 µg/mL) as well as the methanolic raw extract (D10: IC50 = 64.2 ±â€¯2.7 µg/mL and W2: IC50 = 65.8 ±â€¯14.9 µg/mL). Thus, the focus of the phytochemical investigation was laid on the chloroform fraction, which led to the identification of four ursane-type (19α-hydroxyasiatic acid (1), 6ß,23-dihydroxytormentic acid (4), madecassic acid (8), nigaichigoside F1 (10)) and four oleanane-type (arjungenin (2), combregenin (5), terminolic acid (7), arjunglucoside I (11)) triterpenes, as well as abscisic acid (9). Compounds 1 and 2, 4 and 5, 7 and 8 as well as 10 and 11 were isolated as isomeric mixtures in fractions CR-A, CR-C, CR-E and CR-H, respectively. All isolated compounds and mixtures exhibited moderate to low activity, with madecassic acid being most active (D10: IC50 = 28 ±â€¯12 µg/mL and W2: IC50 = 17.2 ±â€¯4.3 µg/mL). CONCLUSION: This paper reports for the first time antiplasmodial principles from C. racemosum and thereby gives reason to the traditional use of the plant.


Subject(s)
Antimalarials/pharmacology , Combretum/chemistry , Plant Extracts/pharmacology , Plasmodium falciparum/drug effects , Triterpenes/pharmacology , Africa, Western , Animals , Antimalarials/isolation & purification , Antimalarials/therapeutic use , Ethnopharmacology , Humans , Malaria/drug therapy , Malaria/parasitology , Medicine, African Traditional/methods , Methanol/chemistry , Parasitic Sensitivity Tests , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Triterpenes/isolation & purification , Triterpenes/therapeutic use
11.
Front Pharmacol ; 10: 952, 2019.
Article in English | MEDLINE | ID: mdl-31551770

ABSTRACT

Over the last decade, several studies demonstrated that prenylation of flavonoids enhances various biological activities as compared to the respective nonprenylated compounds. In line with this, the natural prenylated isoflavonoid alpinumisoflavone (AIF) has been explored for a number of biological and pharmacological effects (therapeutic potential). In this review, we summarize the current information on health-promoting properties of AIF. Reported data evidenced that AIF has a multitherapeutic potential with antiosteoporotic, antioxidant and anti-inflammatory, antimicrobial, anticancer, estrogenic and antiestrogenic, antidiabetic, and neuroprotective properties. However, research on these aspects of AIF is not sufficient and needs to be reevaluated using more appropriate methods and methodology. Further series of studies are needed to confirm these pharmacological effects, and this review should lay the basis for the design of respective investigations. Overall, despite the drawbacks of studies recorded, AIF exhibits a potential as drug candidate.

12.
Phytomedicine ; 60: 152912, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30979690

ABSTRACT

BACKGROUND: Metaxya rostrata C.Presl (Metaxyaceae) is a tree fern widespread in Central and South America and the dried rhizome is used in ethnic medicine against intestinal ulcers or tumors. An activity-guided isolation resulted in two structurally related xanthones: 2-deprenyl-rheediaxanthone B (XB) and 2-deprenyl-7-hydroxy-rheediaxanthone B (OH-XB). HYPOTHESIS/PURPOSE: This study analyzed the cytotoxic activity and underlying cellular mechanisms of OH-XB for the first time in comparison to XB. METHODS: We exposed the colorectal cancer cell line SW480 and F331 fibroblasts to XB and OH-XB and determined cell viability by neutral red uptake and nuclear morphology by staining with Hoechst dye. Cell cycle distribution and the mechanism of cell death were analyzed by FACS and western blot. Knockdown of FoxM1 expression was performed with siRNA. RESULTS: OH-XB was at least as cytotoxic as XB in the induction of cell cycle arrest and active cell death. While both compounds strongly inhibited the transcription factor FoxM1, the cellular mechanisms of growth arrest and cell death induction differed widely: OH-XB induced S-phase cell cycle arrest in contrast to a G2-M-phase arrest by XB. It caused morphological modifications typical for classical apoptosis with increased caspase 7 activity and enhanced cleavage of PARP, while XB caused caspase 2 activation and mitotic catastrophe. After knockdown of FoxM1 expression no induction of caspase activity could be observed. CONCLUSION: In summary, our data clearly showed that XB and OH-XB are promising new lead compounds for cancer therapy with distinct cellular mechanisms. Both compounds are candidates for further pre-clinical and clinical investigations.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Colorectal Neoplasms/drug therapy , Ferns/chemistry , Forkhead Box Protein M1/drug effects , Xanthones/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Forkhead Box Protein M1/metabolism , G2 Phase/drug effects , Gene Knockdown Techniques , Humans , Mitosis/drug effects , Prenylation , Rhizome/chemistry , Xanthones/chemistry
13.
Chemosphere ; 224: 884-891, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30986894

ABSTRACT

Comparative accumulation of cadmium (Cd) and nickel (Ni) and the consequences for the metabolism of common weed dandelion (triploid ones of Taraxacum sect. Taraxacum) were studied here for the first time. Cd accumulated more in both shoots and roots (489 and 2486 µg/g DW) than Ni (165 and 858 µg/g DW) after 14 days of exposure and only root Ni content did not increase between 7 and 14 days of exposure. Surprisingly, though Ni was less accumulated than Cd, it had more negative impact on basic physiology (root dry biomass, shoot water content and chlorophyll amount). Ni also evoked more extensive depression of mineral nutrients (K, Ca, Mg, and Mn) in the shoots than Cd while root potassium content was elevated by both metals. Ni suppressed accumulation of total thiols but anatomical changes and ROS formation (detected by fluorescence microscopy of total ROS and lipid peroxidation) were induced more by Cd. Total soluble phenols, major (caftaric and cichoric) and minor (chlorogenic and caffeic) phenolic acids were elevated by both metals and rather increased with prolonged exposure in the shoots (14 versus 7 days). On the contrary, typically depletion of these metabolites was found in the roots after prolonged exposure to Ni, but not to Cd. Data showed distinct toxicity of Cd and Ni in dandelion. More expressive tolerance of dandelion to Cd than to Ni indicates its potential use for the remediation of Cd-contaminated environment.


Subject(s)
Cadmium/metabolism , Nickel/metabolism , Taraxacum/metabolism , Biodegradation, Environmental , Cadmium/pharmacology , Cadmium/toxicity , Hydroxybenzoates , Lipid Peroxidation , Nickel/pharmacology , Nickel/toxicity , Nutrients , Oxidative Stress/drug effects , Phenols/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Reactive Oxygen Species
14.
Front Pharmacol ; 9: 304, 2018.
Article in English | MEDLINE | ID: mdl-29666580

ABSTRACT

A detannified methanolic extract of Scrophularia lucida L. attenuated the formation of cancer cell-induced circular chemorepellent induced defects (CCIDs) in the lymph endothelial cell barrier, which resemble entry ports for the intravasating tumor into the vasculature as a prerequisite for lymph node metastasis. Therefore, the composition of this extract was studied in an activity-guided approach. Since no data on the secondary metabolites of this plant were available, first phytochemical data were collected in the course of the fractionation of the extract. The study resulted in the identification of 14 substances, among them very rare iridoids, such as scrovalentinoside or koelzioside, and several flavonoids (e.g., nepitrin and homoplantaginin). One of the latter group, 2″-O-acetyl-homoplantaginin, is a new natural compound. In the most active fraction, the flavonoid hispidulin was identified as major component and the assay of the pure compound confirmed a contribution of hispidulin to the CCID-inhibitory effects of S. lucida. The activity of the two major iridoids in this assay was less compared to hispidulin.

15.
Front Pharmacol ; 9: 220, 2018.
Article in English | MEDLINE | ID: mdl-29593542

ABSTRACT

Flavonoids, present in fruits, vegetables and traditional medicinal plants, show anticancer effects in experimental systems and are reportedly non-toxic. This is a favorable property for long term strategies for the attenuation of lymph node metastasis, which may effectively improve the prognostic states in breast cancer. Hence, we studied two flavonoids, apigenin and luteolin exhibiting strong bio-activity in various test systems in cancer research and are readily available on the market. This study has further advanced the mechanistic understanding of breast cancer intravasation through the lymphatic barrier. Apigenin and luteolin were tested in a three-dimensional (3-D) assay consisting of MDA-MB231 breast cancer spheroids and immortalized lymph endothelial cell (LEC) monolayers. The 3-D model faithfully resembles the intravasation of breast cancer emboli through the lymphatic vasculature. Western blot analysis, intracellular Ca2+ determination, EROD assay and siRNA transfection revealed insights into mechanisms of intravasation as well as the anti-intravasative outcome of flavonoid action. Both flavonoids suppressed pro-intravasative trigger factors in MDA-MB231 breast cancer cells, specifically MMP1 expression and CYP1A1 activity. A pro-intravasative contribution of FAK expression in LECs was established as FAK supported the retraction of the LEC monolayer upon contact with cancer cells thereby enabling them to cross the endothelial barrier. As mechanistic basis, MMP1 caused the phosphorylation (activation) of FAK at Tyr397 in LECs. Apigenin and luteolin prevented MMP1-induced FAK activation, but not constitutive FAK phosphorylation. Luteolin, unlike apigenin, inhibited MMP1-induced Ca2+ release. Free intracellular Ca2+ is a central signal amplifier triggering LEC retraction through activation of the mobility protein MLC2, thereby enhancing intravasation. FAK activity and Ca2+ levels did not correlate. This implicates that the pro-intravasative contribution of FAK and of Ca2+ release in LECs was independent of each other and explains the better anti-intravasative effects of luteolin in vitro. In specific formulations, flavonoid concentrations causing significant anti-intravasative effects, can certainly be achieved in vivo. As the therapeutic strategy has to be based on permanent flavonoid treatment both the beneficial and adverse effects have to be investigated in future studies.

16.
Curr Med Chem ; 25(27): 3162-3213, 2018.
Article in English | MEDLINE | ID: mdl-29446727

ABSTRACT

BACKGROUND: The approval of Taxol® in 1993 marked the great entrance of terpenoids in the anti-cancer area and this drug is still highly important in the treatment of refractory ovarian, breast and other cancers. Over decades, other prominent natural terpenoids have become indispensable for the modern pharmacotherapy of breast cancer. However, given the rapid evolution of drug resistance, effective treatments for advanced breast cancers requiring cytotoxic chemotherapy represent a major unmet clinical need. Therefore, innovative agents effective in long-term chemotherapy are urgently needed. OBJECTIVE: This review examines recent advances/research about natural terpenoids, and their mechanisms against female breast cancer over the period covering January 1st, 2012 to December 31st, 2016. RESULTS: Carcinogenesis constitutes a multistep process wherein each stage is characterized by distinct phenotypic changes. Numerous chemicals recorded in this review have been shown to significantly inhibit proliferation, migration, apoptosis resistance, tumor angiogenesis or metastasis in different breast cancer cells/tumours in vitro and in vivo. Targeting simultaneously several or all these aspects/steps of cancer progression could be an advantage. In line with this, phytochemicals such as thymoquinone (8), costunolide (46), tanshinone IIA (132), triptolide (136), cucurbitacin B (179), celastrol (226) and lycopene (238) had caught our attention. CONCLUSION: These compounds appear to be promising to overcome breast cancer treatment failure. However, despite the interesting activities, additional preclinical investigations are needed in further breast cancer cell/tumor models in vitro and in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Breast Neoplasms/drug therapy , Terpenes/pharmacology , Animals , Antineoplastic Agents/chemistry , Biological Products/chemistry , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Female , Humans , Terpenes/chemistry
17.
Food Chem Toxicol ; 111: 114-124, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29129665

ABSTRACT

Mechanisms how colorectal cancer (CRC) cells penetrate blood micro-vessel endothelia and metastasise is poorly understood. To study blood endothelial cell (BEC) barrier breaching by CRC emboli, an in vitro assay measuring BEC-free areas underneath SW620 cell spheroids, so called "circular chemorepellent induced defects" (CCIDs, appearing in consequence of endothelial retraction), was adapted and supported by Western blotting, EIA-, EROD- and luciferase reporter assays. Inhibition of ALOX12 or NF-κB in SW620 cells or BECs, respectively, caused attenuation of CCIDs. The FDA approved drugs vinpocetine [inhibiting ALOX12-dependent 12(S)-HETE synthesis], ketotifen [inhibiting NF-κB], carbamazepine and fenofibrate [inhibiting 12(S)-HETE and NF-κB] significantly attenuated CCID formation at low µM concentrations. In the 5-FU-resistant SW620-R/BEC model guanfacine, nifedipine and proadifen inhibited CCIDs stronger than in the naïve SW620/BEC model. This indicated that in SW620-R cells formerly silent (yet unidentified) genes became expressed and targetable by these drugs in course of resistance acquisition. Fenofibrate, and the flavonoids hispidulin and apigenin, which are present in medicinal plants, spices, herbs and fruits, attenuated CCID formation in both, naïve- and resistant models. As FDA-approved drugs and food-flavonoids inhibited established and acquired intravasative pathways and attenuated BEC barrier-breaching in vitro, this warrants testing of these compounds in CRC models in vivo.


Subject(s)
Colorectal Neoplasms/pathology , Endothelial Cells/physiology , Endothelium, Vascular/physiology , Flavonoids/pharmacology , Spheroids, Cellular/physiology , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Calcium Channel Blockers/pharmacology , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation, Neoplastic , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasm Metastasis/physiopathology , Pharmaceutical Preparations
19.
Planta Med ; 83(14-15): 1227-1232, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28719925

ABSTRACT

In continuation of our work on a traditional mixture of spices called "Nkui", used in Cameroon for its influence on women's reproductive health, we investigated the chemical composition of Solanum gilo, one component of "Nkui". A methanolic extract was studied in detail. After dereplication of several known compounds, two furo-5-stene-derived saponin glycosides with acetylated sugar moieties were isolated. By extensive 1- and 2D NMR experiments and HR-MS and GC-MS methods, the structures were elucidated as 26-[(3‴,4‴,6‴-tri-O-acetyl)-ß-D-glucopyranosyloxy]-22-hydroxyfurost-5-en-3ß-yl-O-α-L-rhamnopyranosyl-(1″→2')-ß-D-glucopyranoside (A) and 26-[(3‴,4‴,6‴-tri-O-acetyl)-ß-D-glucopyranosyloxy]-22-hydroxyfurost-5-en-3ß-yl-[O-α-L-rhamnopyranosyl-(1''''→4')-O-α-L-rhamnopyranosyl-(1″→2')]-ß-D-glucopyranoside (B), both new natural compounds.


Subject(s)
Glycosides/chemistry , Plant Extracts/chemistry , Saponins/chemistry , Solanum/chemistry , Acetylation , Cameroon , Fruit/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
20.
Phytomedicine ; 31: 10, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28606511
SELECTION OF CITATIONS
SEARCH DETAIL
...