Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 12: 721045, 2021.
Article in English | MEDLINE | ID: mdl-34630515

ABSTRACT

Genome editing in pigs has been made efficient, practical, and economically viable by the CRISPR/Cas9 platform, representing a promising new era in translational modeling of human disease for research and preclinical development of therapies and devices. Porcine embryo microinjection provides a universally available, efficient option over somatic-cell nuclear transfer, but requires that critical considerations be made in genotypic validation of the models that routinely go unaddressed. Accurate validation of genotypes is especially important when modeling genetic disorders, such as neurofibromatosis type 1 (NF1) that exhibits complex genotype-phenotypic relationships. NF1, an autosomal dominant disorder, is particularly hard to model as it manifests very differently across patients, and even within families, with over 3,000 disease-associated mutations of the neurofibromin 1 (NF1) gene identified. The precise nature of the mutations plays a role in the complex phenotypic presentation of the disorder that includes benign and malignant peripheral and central nervous system tumors, a variety of motor deficits and debilitating cognitive impairments and musculoskeletal, cardiovascular, and gastrointestinal disorders. NF1 can also often involve mutations in passenger genes such as TP53. In this manuscript, we describe the creation of three novel porcine models of NF1 and a model additionally harboring a mutation in TP53 by embryo microinjection of CRISPR/Cas9. We present the challenges encountered in validation of genotypes and the methodological strategies developed to counter the hurdles. We present simple options for quantifying level of mosaicism: a quantitative method (targeted amplicon sequencing) for small edits such as SNPs and indels and a semiquantitative method (competitive PCR) for large edits. Characterization of mosaicism allowed for strategic selection of founder pigs for rapid, economical expansion of genetically defined lines. We also present commonly observed unexpected DNA repair products (i.e., structural variants or cryptic alleles) that are refractory to PCR amplification and thus evade detection. We present the use of copy number variance assays to overcome hurdles in detecting cryptic alleles. The report provides a framework for genotypic validation of porcine models created by embryo microinjection and the expansion of lines in an efficient manner.

2.
Nat Commun ; 12(1): 6207, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34707113

ABSTRACT

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Subject(s)
DNA Damage , Nucleotides, Cyclic/metabolism , Signal Transduction , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Crassostrea/genetics , Crassostrea/metabolism , G1 Phase Cell Cycle Checkpoints , Humans , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Mice , Nucleotidyltransferases/metabolism , Phosphorylation , Poly ADP Ribosylation , Protein Serine-Threonine Kinases/metabolism , Recombinational DNA Repair , Sea Anemones/genetics , Sea Anemones/metabolism
3.
Toxicol Sci ; 180(2): 239-251, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33480436

ABSTRACT

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a member of the PER-ARNT-SIM (PAS) superfamily of environmental sensors. The AHR is involved in a series of biological processes including adaptive metabolism of xenobiotics, toxicity of certain environmental pollutants, vascular development, fertility, and immune function. Mouse models, including the Ahr null and Ahr conditional null (Ahrfx) mice, are widely used for the study of AHR-mediated biology and toxicity. The Ahr conditional null mouse harbors the low-affinity Ahrd allele that exhibits approximately a 10-fold lower binding affinity for certain xenobiotic AHR ligands than the widely used C57BL/6 mouse that harbors the higher affinity Ahrb1 allele. Here, we report a novel mouse model that introduces a V375A polymorphism that converts the low-affinity allele into a high-affinity allele, offering a more sensitive conditional model. In the generation of this novel conditional allele, two additional mutants arose, including a 3-bp deletion in the PAS-B domain (AhrNG367R) and an early termination codon in the PAS-B domain (AhrTer383). The AhrNG367R allele presents as a phenocopy of the null and the AhrTer383 allele presents as an antimorph when assessing for the ductus venosus and liver lobe weight endpoints. These new models represent a series of tools that will be useful in further characterizing AHR biology.


Subject(s)
Liver , Receptors, Aryl Hydrocarbon , Alleles , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Basic Helix-Loop-Helix Transcription Factors , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism
4.
Proc Natl Acad Sci U S A ; 111(46): 16514-9, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368192

ABSTRACT

It recently has been recognized that men develop colonic adenomas and carcinomas at an earlier age and at a higher rate than women. In the Apc(Pirc/+) (Pirc) rat model of early colonic cancer, this sex susceptibility was recapitulated, with male Pirc rats developing twice as many adenomas as females. Analysis of large datasets revealed that the Apc(Min/+) mouse also shows enhanced male susceptibility to adenomagenesis, but only in the colon. In addition, WT mice treated with injections of the carcinogen azoxymethane (AOM) showed increased numbers of colonic adenomas in males. The mechanism underlying these observations was investigated by manipulation of hormonal status. The preponderance of colonic adenomas in the Pirc rat model allowed a statistically significant investigation in vivo of the mechanism of sex hormone action on the development of colonic adenomas. Females depleted of endogenous hormones by ovariectomy did not exhibit a change in prevalence of adenomas, nor was any effect observed with replacement of one or a combination of female hormones. In contrast, depletion of male hormones by orchidectomy (castration) markedly protected the Pirc rat from adenoma development, whereas supplementation with testosterone reversed that effect. These observations were recapitulated in the AOM mouse model. Androgen receptor was undetectable in the colon or adenomas, making it likely that testosterone acts indirectly on the tumor lineage. Our findings suggest that indirect tumor-promoting effects of testosterone likely explain the disparity between the sexes in the development of colonic adenomas.


Subject(s)
Adenoma/epidemiology , Carcinogens/toxicity , Colonic Neoplasms/epidemiology , Dihydrotestosterone/toxicity , Gonadal Steroid Hormones/physiology , Neoplasms, Hormone-Dependent/epidemiology , Adenoma/chemically induced , Adenoma/physiopathology , Adenoma/prevention & control , Adenomatous Polyposis Coli/epidemiology , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/physiopathology , Animals , Animals, Congenic , Azoxymethane/toxicity , Colonic Neoplasms/chemically induced , Colonic Neoplasms/physiopathology , Colonic Neoplasms/prevention & control , Disease Models, Animal , Estradiol/administration & dosage , Estradiol/pharmacology , Female , Genes, APC , Hormone Replacement Therapy , Humans , Male , Medroxyprogesterone Acetate/administration & dosage , Medroxyprogesterone Acetate/pharmacology , Mice , Mice, Inbred C57BL , Mutation , Neoplasms, Hormone-Dependent/physiopathology , Neoplasms, Hormone-Dependent/prevention & control , Orchiectomy , Organ Specificity , Ovariectomy , Postmenopause , RNA, Messenger/analysis , Random Allocation , Rats , Rats, Inbred F344 , Rats, Mutant Strains , Receptors, Androgen/biosynthesis , Receptors, Androgen/genetics , Sex Distribution , Species Specificity
5.
Proc Natl Acad Sci U S A ; 111(39): 14295-300, 2014 Sep 30.
Article in English | MEDLINE | ID: mdl-25225411

ABSTRACT

The circadian clock plays a significant role in many aspects of female reproductive biology, including estrous cycling, ovulation, embryonic implantation, onset of puberty, and parturition. In an effort to link cell-specific circadian clocks to their specific roles in female reproduction, we used the promoter that controls expression of Steroidogenic Factor-1 (SF1) to drive Cre-recombinase-mediated deletion of the brain muscle arnt-like 1 (Bmal1) gene, known to encode an essential component of the circadian clock (SF1-Bmal1(-/-)). The resultant SF1-Bmal1(-/-) females display embryonic implantation failure, which is rescued by progesterone supplementation, or bilateral or unilateral transplantation of wild-type ovaries into SF1-Bmal1(-/-) dams. The observation that the central clock, and many other peripheral clocks, are fully functional in this model allows the assignment of the implantation phenotype to the clock in ovarian steroidogenic cells and distinguishes it from more general circadian related systemic pathology (e.g., early onset arthropathy, premature aging, ovulation, late onset of puberty, and abnormal estrous cycle). Our ovarian transcriptome analysis reveals that deletion of ovarian Bmal1 disrupts expression of transcripts associated with the circadian machinery and also genes critical for regulation of progesterone production, such as steroidogenic acute regulatory factor (Star). Overall, these data provide a powerful model to probe the interlocking and synergistic network of the circadian clock and reproductive systems.


Subject(s)
ARNTL Transcription Factors/deficiency , ARNTL Transcription Factors/physiology , Embryo Implantation/physiology , Ovary/cytology , Ovary/physiology , Steroids/biosynthesis , ARNTL Transcription Factors/genetics , Aging/genetics , Aging/physiology , Animals , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Embryo Implantation/drug effects , Embryo Implantation/genetics , Estrus/genetics , Estrus/physiology , Female , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/transplantation , Pregnancy , Progesterone/administration & dosage , Promoter Regions, Genetic , Sexual Maturation/genetics , Sexual Maturation/physiology , Steroidogenic Factor 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...