Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2452, 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37117174

ABSTRACT

Detecting low dose rates of X-rays is critical for making safer radiology instruments, but is limited by the absorber materials available. Here, we develop bismuth oxyiodide (BiOI) single crystals into effective X-ray detectors. BiOI features complex lattice dynamics, owing to the ionic character of the lattice and weak van der Waals interactions between layers. Through use of ultrafast spectroscopy, first-principles computations and detailed optical and structural characterisation, we show that photoexcited charge-carriers in BiOI couple to intralayer breathing phonon modes, forming large polarons, thus enabling longer drift lengths for the photoexcited carriers than would be expected if self-trapping occurred. This, combined with the low and stable dark currents and high linear X-ray attenuation coefficients, leads to strong detector performance. High sensitivities reaching 1.1 × 103 µC Gyair-1 cm-2 are achieved, and the lowest dose rate directly measured by the detectors was 22 nGyair s-1. The photophysical principles discussed herein offer new design avenues for novel materials with heavy elements and low-dimensional electronic structures for (opto)electronic applications.

2.
Angew Chem Int Ed Engl ; 61(39): e202209615, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35909255

ABSTRACT

It is not resolved which model describes better the aqueous-phase nucleation and growth of semiconductor quantum dots (QDs), the classical one-step one or the nonclassical multi-step one. Here, we design a room-temperature reaction to trap reaction intermediates in the prenucleation stage of ZnSe QDs (as a model system). We show that the trapped intermediate can transform to magic-size clusters (MSCs) via intra-molecular reorganization and can fragment to enable the growth of QDs. The MSCs exhibit a sharp optical absorption peaking at 299 nm, labelled MSC-299. The intermediate, the precursor compound (PC-299) of MSC-299, is optically transparent at 299 nm and to longer wavelengths. This intermediate forms in various Zn and Se reaction systems. The present study provides unambiguous evidence that the nonclassical and classical pathways are both necessary to explain the nucleation and growth of aqueous-phase QDs, with the former pathway favored more by high reaction concentrations.

3.
ACS Appl Mater Interfaces ; 13(32): 38499-38507, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34365787

ABSTRACT

Copper(I) thiocyanate (CuSCN) is a stable, low-cost, solution-processable p-type inorganic semiconductor used in numerous optoelectronic applications. Here, for the first time, we employ the time-of-flight (ToF) technique to measure the out-of-plane hole mobility of CuSCN films, enabled by the deposition of 4 µm-thick films using aerosol-assisted chemical vapor deposition (AACVD). A hole mobility of ∼10-3 cm2/V s was measured with a weak electric field dependence of 0.005 cm/V1/2. Additionally, by measuring several 1.5 µm CuSCN films, we show that the mobility is independent of thickness. To further validate the suitability of our AACVD-prepared 1.5 µm-thick CuSCN film in device applications, we demonstrate its incorporation as a hole transport layer (HTL) in methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). Our AACVD films result in devices with measured power conversion efficiencies of 10.4%, which compares favorably with devices prepared using spin-coated CuSCN HTLs (12.6%), despite the AACVD HTLs being an order of magnitude thicker than their spin-coated analogues. Improved reproducibility and decreased hysteresis were observed, owing to a combination of excellent film quality, high charge-carrier mobility, and favorable interface energetics. In addition to providing a fundamental insight into charge-carrier mobility in CuSCN, our work highlights the AACVD methodology as a scalable, versatile tool suitable for film deposition for use in optoelectronic devices.

4.
Phys Chem Chem Phys ; 23(12): 7462-7471, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33876106

ABSTRACT

The processability and optoelectronic properties of organic semiconductors can be tuned and manipulated via chemical design. The substitution of the popular alkyl side chains by oligoethers has recently been successful for applications such as bioelectronic sensors and photocatalytic hydrogen evolution. Beyond the differences in polarity, the carbon-oxygen bond in oligoethers is likely to render the system softer and more prone to dynamical disorder that can be detrimental to charge transport for example. In this context, we use neutron spectroscopy as a master method of probe, in addition to characterisation techniques such as X-ray diffraction, differential scanning calorimetry and polarized optical microscopy to study the effect of the substitution of n-hexyl (Hex) chains by triethylene glycol (TEG) chains on the structural dynamics of two organic semiconducting materials: a phenylene-bithiophene-phenylene (PTTP) small molecule and a fluorene-co-dibenzothiophene (FS) polymer. Counterintuitively, inelastic neutron scattering (INS) reveals a general softening of the modes of PTTP and FS materials with Hex chains, pointing towards an increased dynamical disorder in the Hex-based systems. However, temperature-dependent X-ray and neutron diffraction as well as INS and differential scanning calorimetry evidence an extra reversible transition close to room temperature for PTTP with TEG chains. The observed extra structural transition, which is not accompanied by a change in birefringence, can also be observed by quasi-elastic neutron scattering (QENS). A fastening of the TEG chains dynamics is observed in the case of PTTP and not FS. We therefore assign this transition to the melt of the TEG chains. Overall the TEG chains are promoting dynamical order at room temperature, but if crystallising, may introduce an extra reversible structural transition above room temperature leading to thermal instabilities. Ultimately, a deeper understanding of chain polarity and structural dynamics can help guide new materials design and navigate the intricate balance between electronic charge transport and aqueous swelling that is being sought for a number of emerging organic electronic and bioelectronic applications.

5.
ACS Appl Mater Interfaces ; 13(5): 6470-6479, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33527828

ABSTRACT

Diodes fabricated using a blend of poly(3-hexylthiophene) and phenyl-C61-butyric acid methyl ester (6-80 µm thick) as an organic semiconductor component achieved consistent 4 MeV α particle detection. Current-voltage characteristics and current-time measurements were obtained under α irradiation and in its absence. Steady-state and transient (time-of-flight) photoconduction measurements were additionally performed. Low-bias (<20 V) α particle detection gain-efficiency products of order 10-2 were measured. The α particle detection was achieved reproducibly, reversibly, and repeatably in different devices of varying organic semiconductor layer thicknesses using both the steady-state and time-dependent (dynamic) diode responses. Conductive gain, due to trapped electrons, increased the α particle gain-efficiency product in both forward and reverse bias conditions as well as increasing steady-state photoconduction. The device thickness was optimized to maximize the gain-efficiency product by matching the penetration depth of the α particle, obtained by modeling, to the organic semiconductor layer thickness. Very high confidence α particle detection was achieved (with signal-to-noise ratios exceeding 20) under optimized device dimensions and drive conditions. Hecht function fitting of the gain-efficiency product versus electric field data returns mobility-lifetime products of order 10-6-10-7 cm2 V-1. This work demonstrates that solution-processed organic semiconductor diodes are viable for low-voltage α particle detection.

6.
Sci Rep ; 10(1): 16806, 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33033322

ABSTRACT

Organic light-emitting diode (OLED) displays a sign reversal magnetic field effect (MFE) when the applied magnetic field range is reduced to the sub-milliTesla range and the Polaron Pair Model has been successful in explaining the ultra-small MFE. Here, we obtained high resolution (~ 1 µT) magnetoconductance (MC) and magnetoelectroluminescence (MEL) of a tris-(8-hydroxyquinoline)aluminium-based (Alq3) OLED within the magnetic field range of ± 500 µT with the earth magnetic field components cancelled. A clear "W" shaped MC with a dip position of ± 250 µT and a monotonic MEL were observed. We demonstrate a fitting technique using the polaron pair model to the experimentally obtained MC and MEL. The fitting process extracts physically significant parameters within a working OLED: the local hyperfine fields for electron and hole in Alq3: Bhf1 = (0.63 ± 0.01) mT (electron), Bhf2 = (0.24 ± 0.01) mT (hole); the separation rates for singlet and triplet polaron pairs: kS,s = (44.59 ± 0.01) MHz, kT,s = (43.97 ± 0.01) MHz, and the recombination rate for singlet polaron pair kS,r = (88 ± 6) MHz. The yielded parameters are highly reproducible across different OLEDs and are in broad agreement with density functional theory (DFT) calculations and reported experimental observations. This demonstrates the feasibility of this fitting technique to approach any working OLED for obtaining significant microscopic parameters.

7.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114031

ABSTRACT

In this study, both memcapacitive and memristive characteristics in the composite material based on the rhenium disulfide (ReS2) rich in rhenium (VI) oxide (ReO3) surface overlayer (ReO3@ReS2) and in the indium tin oxide (ITO)/ReO3@ReS2/aluminum (Al) device configuration is presented. Comprehensive experimental analysis of the ReO3@ReS2 material properties' dependence on the memcapacitor electrical characteristics was carried out by standard as well as frequency-dependent current-voltage, capacitance-voltage, and conductance-voltage studies. Furthermore, determination of the charge carrier conduction model, charge carrier mobility, density of the trap states, density of the available charge carrier, free-carrier concentration, effective density of states in the conduction band, activation energy of the carrier transport, as well as ion hopping was successfully conducted for the ReO3@ReS2 based on the experimental data. The ITO/ReO3@ReS2/Al charge carrier conduction was found to rely on the mixed electronic-ionic processes, involving electrochemical metallization and lattice oxygen atoms migration in response to the externally modulated electric field strength. The chemical potential generated by the electronic-ionic ITO/ReO3@ReS2/Al resistive memory cell non-equlibrium processes leads to the occurrence of the nanobattery effect. This finding supports the possibility of a nonvolatile memory cell with a new operation principle based on the potential read function.

8.
Nat Commun ; 11(1): 4199, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826911

ABSTRACT

Aqueous-phase approaches to semiconductor CdS magic-size clusters (MSCs) and the formation pathway have remained relatively unexplored. Here, we report the demonstration of an aqueous-phase, room-temperature approach to CdS MSCs, together with an exploration of their evolution pathway. The resulting CdS MSCs display a sharp optical absorption peak at about 360 nm and are labeled MSC-360. With CdCl2 and thiourea as the respective Cd and S sources, and 3-mercarpotopropionic acid as the ligand, CdS MSC-360 develops in a mixture of a primary amine and water. We argue that the primary amine facilitates room-temperature decomposition of thiourea when CdCl2 is present, and the formation pathway of MSCs is similar to that in organic-phase approaches. Our findings show there is a viable avenue to room-temperature aqueous-phase formation of CdS MSCs. Providing explanations of the procedure developed including the formation of large aggregates, the present study represents an important advance towards a mechanistic understanding of nanocrystal synthesis.

9.
J Phys Chem Lett ; 10(20): 6399-6408, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31593476

ABSTRACT

It is well-known that optical absorption and photoluminescence (PL) provide information that is sensitive to the size and size distribution of colloidal binary semiconductor quantum dots (QDs). To explore the nature of reaction products, clusters, and/or small-size QDs, we show that it is important to perform as well photoluminescence excitation (PLE) spectroscopy. For two non-hot-injection reactions of cadmium oleate (Cd(OA)2) and selenium (Se) in 1-octadecene (ODE), we show that sequentially extracted products displayed a similar apparent red shift in both absorption and PL with a full width at half-maximum (fwhm) of ∼30 nm. We demonstrate that one reaction (with the presence of diphenyl phosphine (HPPh2)) produced multiple types of clusters (with slightly different optical properties) in one ensemble, while the other reaction (without HPPh2) yielded primarily small-size QDs. Our findings provide evidence for the probable existence of clusters within small-size CdSe QD products, the existence of which complicates the size determination of small-size CdSe QDs.

10.
ACS Appl Mater Interfaces ; 11(40): 37184-37192, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31423778

ABSTRACT

Nanoparticles (NPs) have had increasingly successful applications including in emissive or photovoltaic devices; however, trap states associated with the surface of NPs often drastically reduce the efficiency of devices and are difficult to detect spectroscopically. We show the applicability of photoconduction as the means of detecting and quantifying trap states in NPs. We performed time-of-flight (ToF) photoconduction measurements, using semiconducting poly[bis(4-phenyl)(4-butyphenyl)amine] (P-TPD) doped with either core/shell CdSeS/CdS quantum dots (QDs) or perovskite CsPbBr3 NPs, both of which are carefully designed to be energetically matched. In the case of the QDs, a drop in the hole mobility from ∼10-3 to ∼10-4 cm2 V-1 s-1 was observed when compared to a control sample, suggesting the presence of a hole trapping. These trap states were found to be around -5.0 to -4.9 eV from the vacuum level. The presence of the trap states was further supported by a coincident reduction in the photoluminescence (PL), quantum yield (QY), and lifetime of the core/shell QDs after purification. Using the measured reductions in the PL, QY, and lifetime, the surface trap state density was estimated to increase by between 20 and 40%, most likely due to a ligand detachment. In the case of the perovskite NP-doped samples, a mobility of ∼10-3 cm2 V-1 s-1 was measured. Thus, doping with perovskite NPs did not generate any obvious hole trapping from the P-TPD matrix. The absence of a trapping may be related to the reduced surface-to-volume ratio and NP number density of the perovskite NPs compared to the core/shell QDs, since the perovskite NPs are approximately 10 times larger in radius than that of the core/shell QDs. Our results suggest that to minimize the presence of trap states with a view to improving device performance, large-size perovskite NPs appear to be better than small-size QDs.

11.
J Phys Chem Lett ; 10(11): 2725-2732, 2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31082238

ABSTRACT

We report on the development of a single-step method for synthesizing colloidal semiconductor magic-size clusters (MSCs) with an enhanced production yield in a single-ensemble form and free of the coproduction of conventional quantum dots (QDs). This process eliminates the need for the second step of a lower-temperature incubation used in a two-step approach reported recently for the fabrication of single-ensemble MSCs without QD contamination. We demonstrate that the combined use of a secondary phosphine (HPR2) and an α-methyl carboxylic acid [RCH(CH3)-COOH, MA] promotes the yield of MSCs and suppresses the nucleation and growth of QDs. With CdO and elemental S powder as Cd and S sources, respectively, a single ensemble of CdS MSC-311 (displaying a sharp absorption peak at 311 nm) evolves directly in a reaction in 1-octadecene with an enhanced production yield. This study introduces a one-step avenue for synthesizing effectively and selectively single-ensemble MSCs and improves our understanding of the two-pathway model proposed for the prenucleation stage of QDs.

12.
Nat Commun ; 10(1): 1674, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30976002

ABSTRACT

Alloy semiconductor magic-size clusters (MSCs) have received scant attention and little is known about their formation pathway. Here, we report the synthesis of alloy CdTeSe MSC-399 (exhibiting sharp absorption peaking at 399 nm) at room temperature, together with an explanation of its formation pathway. The evolution of MSC-399 at room temperature is detected when two prenucleation-stage samples of binary CdTe and CdSe are mixed, which are transparent in optical absorption. For a reaction consisting of Cd, Te, and Se precursors, no MSC-399 is observed. Synchrotron-based in-situ small angle X-ray scattering (SAXS) suggests that the sizes of the two samples and their mixture are similar. We argue that substitution reactions take place after the two binary samples are mixed, which result in the formation of MSC-399 from its precursor compound (PC-399). The present study provides a room-temperature avenue to engineering alloy MSCs and an in-depth understanding of their probable formation pathway.

13.
Sci Rep ; 9(1): 3439, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30837571

ABSTRACT

The Polaron Pair (PP) model has been successfully applied to magnetoconductance (MC) in organic semiconductor devices under ultra-small magnetic fields (USMFE). We report µT resolution MC measurements carried out with high sensitivity (better than 10-6) on the common organic semiconductor tris-(8-hydroxyquinoline)aluminium in the range ±500 µT displaying clear minima at ~±240 µT. Unlike traditional approaches, where device MC is simply evaluated using the PP model using nominal parameters for microscopic quantities such as the local hyperfine magnetic field, we have carried out actual fitting of the PP MC model to the experimentally obtained data. The fitting procedure yields physically realistic values for the polaron pair decay rate, local hyperfine magnetic field and triplet contribution to dissociation namely: [Formula: see text] = 28.6 ± 9.7 MHz, [Formula: see text] = 0.34 ± 0.04 mT and [Formula: see text] = 0.99 ± 0.01 respectively. The local hyperfine field obtained by fitting is in excellent agreement with independently calculated values for this system and is reproducible across different devices and independent of drive conditions. This demonstrates the applicability of the fitting approach to any organic USMFE MC data for obtaining microscopic parameter values.

14.
J Phys Chem Lett ; 9(18): 5288-5295, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30169042

ABSTRACT

There are two types of colloidal semiconductor nanocrystals (NCs) that exhibit band gap absorption that is relatively sharp compared to conventional quantum dots (QDs). One type displays an absorption doublet, while the other displays an absorption singlet. Here, we report the evolution of the two types of NCs at room temperature from a single CdTe sample extracted during the induction period (IP) prior to nucleation and growth of conventional QDs. The resulting NCs exhibit band gap absorption peaking at ∼371 nm and are magic-size clusters (MSCs), labeled as dMSC-371 and sMSC-371 for the doublet and singlet cases, respectively. We demonstrate that dMSC-371 (with another peak at ∼350 nm) evolves when the sample is incubated. When the sample is dispersed without incubation into a toluene and octylamine mixture, dMSC-371 or sMSC-371 grows depending on the amine amount. We propose that dMSC-371 and sMSC-371 are a pair of polymorphs (with identical CdTe core compositions). The present study brings insight into the formation relationship between dMSCs and sMSCs.

15.
J Phys Chem Lett ; 9(13): 3660-3666, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29932336

ABSTRACT

The formation relationship between colloidal magic-size clusters (MSCs) and conventional quantum dots (QDs) has not been well established. Here, we report our systematic study on their formation pathways, using cadmium sulfide (CdS) as a model system. Two Cd precursors were prepared from CdO with branched 2-methyloctadecanoic acid (C16H33CH(CH3)-COOH) and linear oleic acid (C16H31CH2-COOH), reacting with elemental S powder in 1-octadecene (ODE). We show that the presence of MSC-311 (exhibiting a sharp absorption peaking at 311 nm) is regulated by the growth of conventional QDs. We demonstrate that MSC-311 cannot directly convert into conventional QDs but to its immediate precursor (IP-311), which is transparent in optical absorption (>310 nm). We propose that there are two individual pathways for the formation of MSCs and conventional QDs, linked by an intrinsic pathway from MSCs to IPs to fragments to QDs. The present study introduces new avenues to precisely control their formation.

17.
Philos Trans A Math Phys Eng Sci ; 364(1847): 2779-87, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-16973489

ABSTRACT

Organic electronics technology, in which at least the semiconducting component of the integrated circuit is an organic material, offers the potential for fabrication of electronic products by low-cost printing technologies, such as ink jet, gravure offset lithography and flexography. The products will typically be of lower performance than those using the present state of the art single crystal or polysilicon transistors, but comparable to amorphous silicon. A range of prototypes are under development, including rollable electrophoretic displays, active matrix liquid crystal (LC) displays, flexible organic light emitting diode displays, low frequency radio frequency identification tag and other low performance electronics. Organic semiconductors that offer both electrical performance and stability with respect to storage and operation under ambient conditions are required. This work describes the development of reactive mesogen semiconductors, which form large crosslinked LC domains on polymerization within mesophases. These crosslinked domains offer mechanical stability and are inert to solvent exposure in further processing steps. Reactive mesogens containing conjugated aromatic cores, designed to facilitate charge transport and provide good oxidative stability, were prepared and their liquid crystalline properties evaluated. The organization and alignment of the mesogens, both before and after crosslinking, were probed by grazing incidence wide-angle X-ray scattering of thin films. Both time-of-flight and field effect transistor devices were prepared and their electrical characterization reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...