Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783391

ABSTRACT

The single-stranded RNA genome of SARS-CoV-2 is highly structured. Numerous helical stem-loop structures interrupted by mismatch motifs are present in the functionally important 5'- and 3'-UTRs. These mismatches modulate local helical geometries and feature unusual arrays of hydrogen bonding donor and acceptor groups. However, their conformational and dynamical properties cannot be directly inferred from chemical probing and are difficult to predict theoretically. A mismatch motif (SL1-motif) consisting of three consecutive U•U base pairs is located in stem-loop 1 of the 3'-UTR. We combined NMR-spectroscopy and MD-simulations to investigate its structure and dynamics. All three U•U base pairs feature two direct hydrogen bonds and are as stable as Watson-Crick A:U base pairs. Plasmodium falciparum 25S rRNA contains a triple U•U mismatch motif (Pf-motif) differing from SL1-motif only with respect to the orientation of the two closing base pairs. Interestingly, while the geometry of the outer two U•U mismatches was identical in both motifs the preferred orientation of the central U•U mismatch was different. MD simulations and potassium ion titrations revealed that the potassium ion-binding mode to the major groove is connected to the different preferred geometries of the central base pair in the two motifs.

2.
J Chem Inf Model ; 64(9): 3896-3911, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38630447

ABSTRACT

Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.


Subject(s)
G-Quadruplexes , Molecular Dynamics Simulation , Mechanical Phenomena , Biomechanical Phenomena , DNA/chemistry
3.
J Chem Theory Comput ; 19(22): 8423-8433, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37944118

ABSTRACT

Molecular dynamics (MD) simulations represent an established tool to study RNA molecules. The outcome of MD studies depends, however, on the quality of the force field (ff). Here we suggest a correction for the widely used AMBER OL3 ff by adding a simple adjustment of the nonbonded parameters. The reparameterization of the Lennard-Jones potential for the -H8···O5'- and -H6···O5'- atom pairs addresses an intranucleotide steric clash occurring in the type 0 base-phosphate interaction (0BPh). The nonbonded fix (NBfix) modification of 0BPh interactions (NBfix0BPh modification) was tuned via a reweighting approach and subsequently tested using an extensive set of standard and enhanced sampling simulations of both unstructured and folded RNA motifs. The modification corrects minor but visible intranucleotide clash for the anti nucleobase conformation. We observed that structural ensembles of small RNA benchmark motifs simulated with the NBfix0BPh modification provide better agreement with experiments. No side effects of the modification were observed in standard simulations of larger structured RNA motifs. We suggest that the combination of OL3 RNA ff and NBfix0BPh modification is a viable option to improve RNA MD simulations.


Subject(s)
Phosphates , RNA , RNA/chemistry , Molecular Dynamics Simulation , Molecular Conformation , Nucleotide Motifs
4.
J Chem Inf Model ; 63(15): 4716-4731, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37458574

ABSTRACT

Guanine quadruplexes (GQs) are non-canonical nucleic acid structures involved in many biological processes. GQs formed in single-stranded regions often need to be unwound by cellular machinery, so their mechanochemical properties are important. Here, we performed steered molecular dynamics simulations of human telomeric GQs to study their unfolding. We examined four pulling regimes, including a very slow setup with pulling velocity and force load accessible to high-speed atomic force microscopy. We identified multiple factors affecting the unfolding mechanism, i.e.,: (i) the more the direction of force was perpendicular to the GQ channel axis (determined by GQ topology), the more the base unzipping mechanism happened, (ii) the more parallel the direction of force was, GQ opening and cross-like GQs were more likely to occur, (iii) strand slippage mechanism was possible for GQs with an all-anti pattern in a strand, and (iv) slower pulling velocity led to richer structural dynamics with sampling of more intermediates and partial refolding events. We also identified that a GQ may eventually unfold after a force drop under forces smaller than those that the GQ withstood before the drop. Finally, we found out that different unfolding intermediates could have very similar chain end-to-end distances, which reveals some limitations of structural interpretations of single-molecule spectroscopic data.


Subject(s)
G-Quadruplexes , Guanine , Humans , Guanine/chemistry , Molecular Dynamics Simulation , Mechanical Phenomena , Telomere
5.
J Chem Inf Model ; 63(9): 2794-2809, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37126365

ABSTRACT

Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered "half-closed" intermediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.


Subject(s)
DNA, Cruciform , DNA , Molecular Conformation , DNA Repair
6.
RNA ; 29(6): 790-807, 2023 06.
Article in English | MEDLINE | ID: mdl-36868785

ABSTRACT

Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.


Subject(s)
Pseudouridine , RNA , RNA/genetics , RNA/chemistry , Pseudouridine/genetics , Nucleic Acid Conformation , Base Pairing , Uridine
7.
Nucleic Acids Res ; 50(21): 12480-12496, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36454011

ABSTRACT

Recognition of single-stranded RNA (ssRNA) by RNA recognition motif (RRM) domains is an important class of protein-RNA interactions. Many such complexes were characterized using nuclear magnetic resonance (NMR) and/or X-ray crystallography techniques, revealing ensemble-averaged pictures of the bound states. However, it is becoming widely accepted that better understanding of protein-RNA interactions would be obtained from ensemble descriptions. Indeed, earlier molecular dynamics simulations of bound states indicated visible dynamics at the RNA-RRM interfaces. Here, we report the first atomistic simulation study of spontaneous binding of short RNA sequences to RRM domains of HuR and SRSF1 proteins. Using a millisecond-scale aggregate ensemble of unbiased simulations, we were able to observe a few dozen binding events. HuR RRM3 utilizes a pre-binding state to navigate the RNA sequence to its partially disordered bound state and then to dynamically scan its different binding registers. SRSF1 RRM2 binding is more straightforward but still multiple-pathway. The present study necessitated development of a goal-specific force field modification, scaling down the intramolecular van der Waals interactions of the RNA which also improves description of the RNA-RRM bound state. Our study opens up a new avenue for large-scale atomistic investigations of binding landscapes of protein-RNA complexes, and future perspectives of such research are discussed.


Subject(s)
RNA-Binding Proteins , RNA , RNA/chemistry , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , RNA Recognition Motif/genetics , ELAV-Like Protein 1/metabolism , Protein Binding , Binding Sites
8.
J Phys Chem B ; 126(45): 9207-9221, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36348631

ABSTRACT

RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 µs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.


Subject(s)
Molecular Dynamics Simulation , RNA Recognition Motif , RNA/chemistry , Molecular Conformation , Proteins/chemistry
9.
Nat Commun ; 13(1): 3112, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35662248

ABSTRACT

The programmable synthesis of rationally engineered crystal architectures for the precise arrangement of molecular species is a foundational goal in nanotechnology, and DNA has become one of the most prominent molecules for the construction of these materials. In particular, branched DNA junctions have been used as the central building block for the assembly of 3D lattices. Here, crystallography is used to probe the effect of all 36 immobile Holliday junction sequences on self-assembling DNA crystals. Contrary to the established paradigm in the field, most junctions yield crystals, with some enhancing the resolution or resulting in unique crystal symmetries. Unexpectedly, even the sequence adjacent to the junction has a significant effect on the crystal assemblies. Six of the immobile junction sequences are completely resistant to crystallization and thus deemed "fatal," and molecular dynamics simulations reveal that these junctions invariably lack two discrete ion binding sites that are pivotal for crystal formation. The structures and dynamics detailed here could be used to inform future designs of both crystals and DNA nanostructures more broadly, and have potential implications for the molecular engineering of applied nanoelectronics, nanophotonics, and catalysis within the crystalline context.


Subject(s)
DNA, Cruciform , Nanostructures , Crystallization , DNA/chemistry , DNA, Cruciform/genetics , Nanostructures/chemistry , Nanotechnology , Nucleic Acid Conformation
10.
J Chem Theory Comput ; 18(7): 4490-4502, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35699952

ABSTRACT

The capability of current force fields to reproduce RNA structural dynamics is limited. Several methods have been developed to take advantage of experimental data in order to enforce agreement with experiments. Here, we extend an existing framework which allows arbitrarily chosen force-field correction terms to be fitted by quantification of the discrepancy between observables back-calculated from simulation and corresponding experiments. We apply a robust regularization protocol to avoid overfitting and additionally introduce and compare a number of different regularization strategies, namely, L1, L2, Kish size, relative Kish size, and relative entropy penalties. The training set includes a GACC tetramer as well as more challenging systems, namely, gcGAGAgc and gcUUCGgc RNA tetraloops. Specific intramolecular hydrogen bonds in the AMBER RNA force field are corrected with automatically determined parameters that we call gHBfixopt. A validation involving a separate simulation of a system present in the training set (gcUUCGgc) and new systems not seen during training (CAAU and UUUU tetramers) displays improvements regarding the native population of the tetraloop as well as good agreement with NMR experiments for tetramers when using the new parameters. Then, we simulate folded RNAs (a kink-turn and L1 stalk rRNA) including hydrogen bond types not sufficiently present in the training set. This allows a final modification of the parameter set which is named gHBfix21 and is suggested to be applicable to a wider range of RNA systems.


Subject(s)
Molecular Dynamics Simulation , RNA , Hydrogen , Hydrogen Bonding , RNA/chemistry , RNA, Ribosomal
11.
J Phys Chem B ; 125(28): 7691-7705, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34258996

ABSTRACT

The YTH domain of YTHDC1 belongs to a class of protein "readers", recognizing the N6-methyladenosine (m6A) chemical modification in mRNA. Static ensemble-averaged structures revealed details of N6-methyl recognition via a conserved aromatic cage. Here, we performed molecular dynamics (MD) simulations along with nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) to examine how dynamics and solvent interactions contribute to the m6A recognition and negative selectivity toward an unmethylated substrate. The structured water molecules surrounding the bound RNA and the methylated substrate's ability to exclude bulk water molecules contribute to the YTH domain's preference for m6A. Intrusions of bulk water deep into the binding pocket disrupt binding of unmethylated adenosine. The YTHDC1's preference for the 5'-Gm6A-3' motif is partially facilitated by a network of water-mediated interactions between the 2-amino group of the guanosine and residues in the m6A binding pocket. The 5'-Im6A-3' (where I is inosine) motif can be recognized too, but disruption of the water network lowers affinity. The D479A mutant also disrupts the water network and destabilizes m6A binding. Our interdisciplinary study of the YTHDC1 protein-RNA complex reveals an unusual physical mechanism by which solvent interactions contribute toward m6A recognition.


Subject(s)
Molecular Dynamics Simulation , RNA-Binding Proteins , Adenosine/analogs & derivatives , Magnetic Resonance Spectroscopy , Nerve Tissue Proteins/metabolism , Protein Binding , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
12.
J Biol Chem ; 296: 100656, 2021.
Article in English | MEDLINE | ID: mdl-33857481

ABSTRACT

The conserved protein Hfq is a key factor in the RNA-mediated control of gene expression in most known bacteria. The transient intermediates Hfq forms with RNA support intricate and robust regulatory networks. In Pseudomonas, Hfq recognizes repeats of adenine-purine-any nucleotide (ARN) in target mRNAs via its distal binding side, and together with the catabolite repression control (Crc) protein, assembles into a translation-repression complex. Earlier experiments yielded static, ensemble-averaged structures of the complex, but details of its interface dynamics and assembly pathway remained elusive. Using explicit solvent atomistic molecular dynamics simulations, we modeled the extensive dynamics of the Hfq-RNA interface and found implications for the assembly of the complex. We predict that syn/anti flips of the adenine nucleotides in each ARN repeat contribute to a dynamic recognition mechanism between the Hfq distal side and mRNA targets. We identify a previously unknown binding pocket that can accept any nucleotide and propose that it may serve as a 'status quo' staging point, providing nonspecific binding affinity, until Crc engages the Hfq-RNA binary complex. The dynamical components of the Hfq-RNA recognition can speed up screening of the pool of the surrounding RNAs, participate in rapid accommodation of the RNA on the protein surface, and facilitate competition among different RNAs. The register of Crc in the ternary assembly could be defined by the recognition of a guanine-specific base-phosphate interaction between the first and last ARN repeats of the bound RNA. This dynamic substrate recognition provides structural rationale for the stepwise assembly of multicomponent ribonucleoprotein complexes nucleated by Hfq-RNA binding.


Subject(s)
Gene Expression Regulation, Bacterial , Host Factor 1 Protein/metabolism , Nucleotide Motifs , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/metabolism , Binding Sites , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/genetics , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Pseudomonas aeruginosa/genetics , RNA, Bacterial/chemistry , RNA, Bacterial/genetics
13.
J Phys Chem B ; 125(3): 825-840, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33467852

ABSTRACT

Phosphorothioates (PTs) are important chemical modifications of the RNA backbone where a single nonbridging oxygen of the phosphate is replaced with a sulfur atom. PT can stabilize RNAs by protecting them from hydrolysis and is commonly used as a tool to explore their function. It is, however, unclear what basic physical effects PT has on RNA stability and electronic structure. Here, we present molecular dynamics (MD) simulations, quantum mechanical (QM) calculations, and NMR spectroscopy measurements, exploring the effects of PT modifications in the structural context of the neomycin-sensing riboswitch (NSR). The NSR is the smallest biologically functional riboswitch with a well-defined structure stabilized by a U-turn motif. Three of the signature interactions of the U-turn: an H-bond, an anion-π interaction, and a potassium binding site; are formed by RNA phosphates, making the NSR an ideal model for studying how PT affects RNA structure and dynamics. By comparing with high-level QM calculations, we reveal the distinct physical properties of the individual interactions facilitated by the PT. The sulfur substitution, besides weakening the direct H-bond interaction, reduces the directionality of H-bonding while increasing its dispersion and induction components. It also reduces the induction and increases the dispersion component of the anion-π stacking. The sulfur force-field parameters commonly employed in the literature do not reflect these distinctions, leading to the unsatisfactory description of PT in simulations of the NSR. We show that it is not possible to accurately describe the PT interactions using one universal set of van der Waals sulfur parameters and provide suggestions for improving the force-field performance.


Subject(s)
Molecular Dynamics Simulation , RNA , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Phosphates
14.
Nat Commun ; 12(1): 428, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462199

ABSTRACT

The human prototypical SR protein SRSF1 is an oncoprotein that contains two RRMs and plays a pivotal role in RNA metabolism. We determined the structure of the RRM1 bound to RNA and found that the domain binds preferentially to a CN motif (N is for any nucleotide). Based on this solution structure, we engineered a protein containing a single glutamate to asparagine mutation (E87N), which gains the ability to bind to uridines and thereby activates SMN exon7 inclusion, a strategy that is used to cure spinal muscular atrophy. Finally, we revealed that the flexible inter-RRM linker of SRSF1 allows RRM1 to bind RNA on both sides of RRM2 binding site. Besides revealing an unexpected bimodal mode of interaction of SRSF1 with RNA, which will be of interest to design new therapeutic strategies, this study brings a new perspective on the mode of action of SRSF1 in cells.


Subject(s)
RNA Recognition Motif/genetics , RNA Splice Sites/genetics , RNA Splicing , Serine-Arginine Splicing Factors/metabolism , Survival of Motor Neuron 1 Protein/genetics , Amino Acid Substitution , Asparagine/genetics , Computational Biology , Exons/genetics , Glutamic Acid/genetics , HEK293 Cells , Humans , Molecular Dynamics Simulation , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Nuclear Magnetic Resonance, Biomolecular , Protein Engineering , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/isolation & purification , Serine-Arginine Splicing Factors/ultrastructure , Uridine/metabolism
15.
Biochim Biophys Acta Gen Subj ; 1865(1): 129771, 2021 01.
Article in English | MEDLINE | ID: mdl-33153976

ABSTRACT

BACKGROUND: The chromodomain (CD) of HP1 proteins is an established H3K9me3 reader that also binds H1, EHMT2 and H3K23 lysine-methylated targets. Structural experiments have provided atomistic pictures of its recognition of the conserved ARKme3S/T motif, but structural dynamics' contribution to the recognition may have been masked by ensemble averaging. METHODS: We acquired ~350 µs of explicit solvent molecular dynamics (MD) simulations of the CD domain interacting with several peptides using the latest AMBER force fields. RESULTS: The simulations reproduced the experimentally observed static binding patterns well but also revealed visible structural dynamics at the interfaces. While the buried K0me3 and A-2 target residues are tightly bound, several flanking sidechains sample diverse sites on the CD surface. Different amino acid positions of the targets can substitute for each other by forming mutually replaceable interactions with CD, thereby explaining the lack of strict requirement for cationic H3 target residues at the -3 position. The Q-4 residue of H3 targets further stabilizes the binding. The recognition pattern of the H3K23 ATKme3A motif, for which no structure is available, is predicted. CONCLUSIONS: The CD reads a longer target segment than previously thought, ranging from positions -7 to +3. The CD anionic clamp can be neutralized not only by the -3 and -1 residues, but also by -7, -6, -5 and +3 residues. GENERAL SIGNIFICANCE: Structural dynamics, not immediately apparent from the structural data, contribute to molecular recognition between the HP1 CD domain and its targets. Mutual replaceability of target residues increases target sequence flexibility.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Amino Acid Sequence , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Lysine/metabolism , Methylation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational
16.
J Chem Theory Comput ; 16(12): 7601-7617, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33215915

ABSTRACT

Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD simulations, depicting the sequence of events leading to the loss of the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid ff's.


Subject(s)
Molecular Dynamics Simulation , RNA/chemistry , Base Sequence , Density Functional Theory , Nucleic Acid Conformation
18.
Cells ; 8(9)2019 09 17.
Article in English | MEDLINE | ID: mdl-31533340

ABSTRACT

The family of heterochromatin protein 1 (HP1) isoforms is essential for chromatin packaging, regulation of gene expression, and repair of damaged DNA. Here we document that γ-radiation reduced the number of HP1α-positive foci, but not HP1ß and HP1γ foci, located in the vicinity of the fibrillarin-positive region of the nucleolus. The additional analysis confirmed that γ-radiation has the ability to significantly decrease the level of HP1α in rDNA promoter and rDNA encoding 28S rRNA. By mass spectrometry, we showed that treatment by γ-rays enhanced the HP1ß serine 88 phosphorylation (S88ph), but other analyzed modifications of HP1ß, including S161ph/Y163ph, S171ph, and S174ph, were not changed in cells exposed to γ-rays or treated by the HDAC inhibitor (HDACi). Interestingly, a combination of HDACi and γ-radiation increased the level of HP1α and HP1γ. The level of HP1ß remained identical before and after the HDACi/γ-rays treatment, but HDACi strengthened HP1ß interaction with the KRAB-associated protein 1 (KAP1) protein. Conversely, HP1γ did not interact with KAP1, although approximately 40% of HP1γ foci co-localized with accumulated KAP1. Especially HP1γ foci at the periphery of nucleoli were mostly absent of KAP1. Together, DNA damage changed the morphology, levels, and interaction properties of HP1 isoforms. Also, γ-irradiation-induced hyperphosphorylation of the HP1ß protein; thus, HP1ß-S88ph could be considered as an important marker of DNA damage.


Subject(s)
Cell Nucleolus/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Serine/metabolism , Chromobox Protein Homolog 5 , DNA Damage , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Optical Imaging , Phosphorylation , Tumor Cells, Cultured
19.
J Chem Theory Comput ; 15(10): 5659-5673, 2019 Oct 08.
Article in English | MEDLINE | ID: mdl-31476125

ABSTRACT

Human heterochromatin protein 1 (HP1) is a key factor in heterochromatin formation and maintenance. Its chromo-shadow domain (CSD) homodimerizes, and the HP1 dimer acts as a hub, transiently interacting with diverse binding partner (BP) proteins. We analyze atomistic details of interactions of the HP1γ(CSD) dimer with one of its targets, the histone H3 N-terminal tail, using molecular dynamics (MD) simulations. The goal is to complement the available X-ray crystallography data and unravel potential dynamic effects in the molecular recognition. Our results suggest that HP1(CSD)-BP recognition involves structural dynamics of both partners, including structural communication between adjacent binding pockets that may fine-tune the sequence recognition. For example, HP1 Trp174 sidechain substates may help in distinguishing residues bound in the conserved HP1(CSD) ±2 hydrophobic pockets. Further, there is intricate competition between the binding of negatively charged HP1 C-terminal extension and solvent anions near the ±2 hydrophobic pockets, which is also influenced by the BP sequence. Phosphorylated H3 Y41 can interact with the same site. We also analyze the ability of several pair-additive force fields to describe the protein-protein interface. ff14SB and ff99SB-ILDN* provide the closest correspondence with the crystallographic model. The ff15ipq local dynamics are somewhat less consistent with details of the experimental structure, while larger perturbations of the interface commonly occur in CHARMM36m simulations. The balance of some interactions, mainly around the anion binding site, also depends on the ion parameters. Some differences between the simulated and experimental structures are attributable to crystal packing.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , Histones/chemistry , Chromobox Protein Homolog 5 , Crystallography, X-Ray , Dimerization , Histones/metabolism , Humans , Molecular Dynamics Simulation , Protein Conformation
20.
Nat Commun ; 10(1): 4102, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506434

ABSTRACT

Holliday junctions (HJs) are four-way DNA structures that occur in DNA repair by homologous recombination. Specialized nucleases, termed resolvases, remove (i.e., resolve) HJs. The bacterial protein RuvC is a canonical resolvase that introduces two symmetric cuts into the HJ. For complete resolution of the HJ, the two cuts need to be tightly coordinated. They are also specific for cognate DNA sequences. Using a combination of structural biology, biochemistry, and a computational approach, here we show that correct positioning of the substrate for cleavage requires conformational changes within the bound DNA. These changes involve rare high-energy states with protein-assisted base flipping that are readily accessible for the cognate DNA sequence but not for non-cognate sequences. These conformational changes and the relief of protein-induced structural tension of the DNA facilitate coordination between the two cuts. The unique DNA cleavage mechanism of RuvC demonstrates the importance of high-energy conformational states in nucleic acid readouts.


Subject(s)
DNA, Bacterial/chemistry , DNA, Cruciform/chemistry , Thermus thermophilus/metabolism , Arginine/chemistry , Bacterial Proteins/chemistry , Base Pairing , Base Sequence , Biocatalysis , DNA, Bacterial/metabolism , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...