Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 14527, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32883976

ABSTRACT

Despite significant reductions in malaria transmission across Africa since 2000, progress is stalling. This has been attributed to the development of insecticide resistance and behavioural adaptations in malaria vectors. Whilst insecticide resistance has been widely investigated, there is poorer understanding of the emergence, dynamics and impact of mosquito behavioural adaptations. We conducted a longitudinal investigation of malaria vector host choice over 3 years and resting behaviour over 4 years following a mass long-lasting insecticidal nets (LLINs) distribution in Tanzania. By pairing observations of mosquito ecology with environmental monitoring, we quantified longitudinal shifts in host-choice and resting behaviour that are consistent with adaptation to evade LLINs. The density of An. funestus s.l., declined significantly through time. In tandem, An. arabiensis and An. funestus s.l. exhibited an increased rate of outdoor relative to indoor resting; with An. arabiensis reducing the proportion of blood meals taken from humans in favour of cattle. By accounting for environmental variation, this study detected clear evidence of intra-specific shifts in mosquito behaviour that could be obscured in shorter-term or temporally-coarse surveys. This highlights the importance of mosquito behavioural adaptations to vector control, and the value of longer-term behavioural studies.


Subject(s)
Malaria/prevention & control , Malaria/transmission , Animals , Anopheles/parasitology , Cattle , Humans , Insecticide Resistance , Insecticide-Treated Bednets , Insecticides/therapeutic use , Mosquito Control , Mosquito Vectors/parasitology , Tanzania
2.
Parasit Vectors ; 9: 109, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26920563

ABSTRACT

BACKGROUND: There is growing evidence that the widespread use of Long-Lasting Insecticidal Nets (LLINs) is prompting malaria vectors to shift their biting towards times and places where people are not protected, such as earlier in the evening and/or outdoors. It is uncertain whether these behavioural shifts are due to phenotypic plasticity and/or ecological changes within vector communities that favour more exophilic species, or involve genetic factors within vector species to limit their contact with LLINs. Possibly variation in the time and location of mosquito biting has a genetic basis, but as yet this phenomenon has received little investigation. Here we used a candidate gene approach to investigate whether polymorphisms in selected circadian clock genes could explain variation in the time and location of feeding (indoors versus outside) within a natural population of the major African malaria vector Anopheles arabiensis. METHODS: Host-seeking An. arabiensis were collected from two villages (Lupiro and Sagamaganga) in Tanzania by Human Landing Catch (HLC) technique. Mosquitoes were classified into phenotypes of "early" (7 pm-10 pm) or "late" biting (4 am -7 am), and host-seeking indoors or outdoors. In these samples we genotyped 34 coding SNPs in 8 clock genes (PER, TIM, CLK, CYC, PDP1, VRI, CRY1, and CRY2), and tested for associations between these SNPs and biting phenotypes. SNPs in 8 mitochondrial genes (ATP6, ATP8, COX1, COX2, COX3, ND3, ND5 and CYTB) were also genotyped to test population subdivision within An. arabiensis. RESULTS: The candidate clock genes exhibited polymorphism within An. arabiensis, but it was unrelated to variation in the timing and location of their biting activity. However, there was evidence of strong genetic structure within An. arabiensis populations in association with the TIM, which was unrelated to geographic distance. Substructure within An. arabiensis was also detected using mitochondrial markers. CONCLUSIONS: The variable timing and location of biting in An. arabiensis could not be linked to candidate clock genes that are known to influence behaviour in other Diptera. This finding does not rule out the possibility of a genetic basis to biting behaviour in this malaria vector, but suggests these are complex phenotypes that require more intensive ecological, neuronal and genomic analyses to understand.


Subject(s)
Anopheles/genetics , Anopheles/physiology , Circadian Clocks/genetics , Feeding Behavior , Insect Vectors , Polymorphism, Single Nucleotide , Animals , Genotype , Genotyping Techniques , Humans , Tanzania , Time Factors
3.
Med Vet Entomol ; 24(1): 38-45, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20377730

ABSTRACT

The housing of animals at night was investigated as a possible means of protecting them from attack by Culicoides biting midges (Diptera: Ceratopogonidae), the vectors of bluetongue. Light-trap catches of Culicoides were compared inside and outside animal housing, in the presence and absence of cattle. A three-replicate, 4 x 4 Latin square design was used at four farms in Bala, north Wales, over 12 nights in May and June 2007, and the experiment repeated in October. In the two studies, respectively, >70 000 and >4500 Culicoides were trapped, of which 93% and 86%, respectively, were of the Culicoides obsoletus group. Across the four farms, in May and June, the presence of cattle increased catches of C. obsoletus by 2.3 times, and outside traps caught 6.5 times more insects than inside traps. Similar patterns were apparent in October, but the difference between inside and outside catches was reduced. Catches were strongly correlated with minimum temperature and maximum wind speed and these two variables explained a large amount of night-to-night variation in catch. Outside catches were reduced, to a greater extent than inside catches, by colder minimum temperatures and higher maximum wind speeds. These conditions occur more frequently in October than in May and June, thereby suppressing outside catches more than inside catches, and reducing the apparent degree of exophily of C. obsoletus in autumn. The results suggest that the risk of animals receiving bites from C. obsoletus is reduced by housing at both times of year and the benefit would be greatest on warm, still nights when outside catches are at their greatest.


Subject(s)
Bluetongue virus/growth & development , Bluetongue/prevention & control , Cattle Diseases/prevention & control , Cattle Diseases/virology , Ceratopogonidae/virology , Housing, Animal , Insect Vectors/virology , Animals , Bluetongue/transmission , Bluetongue/virology , Cattle , Cattle Diseases/transmission , Female , Male , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...