Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(39): 35316-35325, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211031

ABSTRACT

In the eutectic mixture of bis(2,2-dinitropropyl) acetal (BDNPA) and bis(2,2-dinitropropyl) formal (BDNPF), also known as nitroplasticizer (NP), n-phenyl-ß-naphthylamine (PBNA), an antioxidant, is used to improve the long-term storage of NP. PBNA scavenges nitrogen oxides (e.g., NO x radicals) that are evolved from NP decomposition, hence slowing down the degradation of NP. Yet, little is known about the associated chemical reaction between NP and PBNA. Herein, using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF), we thoroughly characterize nitrated PBNA derivatives with up to five NO2 moieties in terms of retention time, mass verification, fragmentation pattern, and correlation with NP degradation. The propagation of PBNA nitration is found to depend on the temperature and acidity of the NP system and can be utilized as an indirect, yet reliable, means of determining the extent of NP degradation. At low temperatures (<55 °C), we find that the scavenging efficiency of PBNA is nullified when three NO2 moieties are added to PBNA. Hence, the dinitro derivative can be used as a reliable indicator for the onset of hydrolytic NP degradation. At elevated temperatures (≥55 °C) and especially in the dry environment, the trace amount of water in the condensed NP (<700 ppm) is essentially removed, which accelerates the production of reactive species (e.g., HONO, HNO3 and NO x ). In return, the increased acidity due to HNO3 formation catalyzes the hydrolysis of NP and PBNA nitro derivatives into 2,2-dinitropropanol (DNPOH) and nitrophenol/dinitrophenol, respectively.

2.
Phys Rev E ; 101(3-1): 033207, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32289916

ABSTRACT

Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multicomponent systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion, and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, "pseudo-ions in jellium" (PIJ), based on an isoelectronic assumption (iso-n_{e}). With a multicomponent hypernetted-chain integral equation, we verify the quality of the iso-n_{e} prescription for describing the static structure of the mixtures. This semianalytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.

3.
Phys Rev E ; 95(6-1): 063202, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709340

ABSTRACT

Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2g/cm^{3}, namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

4.
Phys Rev Lett ; 118(22): 226401, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28621967

ABSTRACT

We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

5.
Phys Rev E ; 95(4-1): 043202, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28505713

ABSTRACT

We use classical molecular dynamics (MD) to study electron-ion temperature equilibration in two-component plasmas in regimes for which the presence of coupled collective modes has been predicted to substantively reduce the equilibration rate. Guided by previous kinetic theory work, we examine hydrogen plasmas at a density of n=10^{26}cm^{-3}, T_{i}=10^{5}K, and 10^{7}K

6.
Phys Rev E ; 93(6): 063208, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415378

ABSTRACT

We study how concentration changes ionic transport properties along isobars-isotherms for a mixture of hydrogen and silver, representative of turbulent layers relevant to inertial confinement fusion and astrophysics. Hydrogen will typically be fully ionized while silver will be only partially ionized but can have a large effective charge. This will lead to very different physical conditions for the H and Ag. Large first principles orbital free molecular dynamics simulations are performed and the resulting transport properties are analyzed. Comparisons are made with transport theory in the kinetic regime and in the coupled regime. The addition of a small amount of heavy element in a light material has a dramatic effect on viscosity and diffusion of the mixture. This effect is explained through kinetic theory as a manifestation of a crossover between classical diffusion and Lorentz diffusion.

7.
Phys Rev E ; 93: 042119, 2016 04.
Article in English | MEDLINE | ID: mdl-27176266

ABSTRACT

We present an alternative method for interpreting the velocity autocorrelation function (VACF) of a fluid with application to extracting the entropy in a manner similar to the methods developed by Lin et al. [J. Chem. Phys. 119, 11792 (2003)]JCPSA60021-960610.1063/1.1624057 and improved upon by Desjarlais [Phys. Rev. E 88, 062145 (2013)]PLEEE81539-375510.1103/PhysRevE.88.062145. The liquid VACF is decomposed into two components, one gas and one solid, and each contribution's entropic portion is calculated. However, we fit both the gas and solid portions of the VACF in the time domain. This approach is applied to a single-component liquid (a two-phase model of liquid Al at the melt line) and two different two-component systems: a superionic-to-superionic (bcc to fcc) phase transition in H_{2}O at high temperatures and pressures and a metastable liquid state of MgO. For all three examples, comparisons to existing results in the literature demonstrate the validity of our alternative.

8.
Phys Rev Lett ; 116(11): 115003, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035306

ABSTRACT

Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation time scales of the correlation functions associated with ionic motion. In the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.

9.
J Chem Phys ; 143(16): 164513, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26520533

ABSTRACT

We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH4:NH3:H2O) for various compositions and temperatures (2000 K ≤ T ≤ 10,000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the nature of these systems engendered by variations in the concentration ratios. A basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.

10.
Article in English | MEDLINE | ID: mdl-26382529

ABSTRACT

We present simulations of a four-component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5-200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. Additionally, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.

11.
Article in English | MEDLINE | ID: mdl-25679563

ABSTRACT

A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

12.
Article in English | MEDLINE | ID: mdl-25375608

ABSTRACT

In the warm dense matter (WDM) regime, material properties like diffusion and viscosity can be obtained from lengthy quantum molecular dynamics simulations, where the quantum behavior of the electrons is represented using either Kohn-Sham or orbital-free density functional theory. To reduce the simulation duration, we fit the time dependence of the autocorrelation functions (ACFs) and then use the fit to find values of the diffusion and viscosity. This fitting procedure avoids noise in the long time behavior of the ACFs. We present a detailed analysis of the functional form used to fit the ACFs, which is always a more efficient means to obtain mass transport properties. We use the fits to estimate the statistical error of the transport properties. We apply this methodology to a dense correlated plasma of copper and a mixture of carbon and hydrogen. Both systems show structure in their ACFs and exhibit multiple time scales. The mixture contains different structural forms of the ACFs for each component in the mixture.

13.
Article in English | MEDLINE | ID: mdl-25615229

ABSTRACT

The shock Hugoniot for lithium 6 deuteride ((6)LiD) was calculated via first principles using Kohn-Sham density-functional theory molecular dynamics (KSMD) for temperatures of 0.5-25 eV. The upper limit of 25 eV represents a practical limit where KSMD is no longer computationally feasible due to the number of electronic bands which are required to be populated. To push the Hugoniot calculations to higher temperatures we make use of orbital-free density-functional theory molecular dynamics (OFMD). Thomas-Fermi-Dirac-based OFMD gives a poor description of the electronic structure at low temperatures so the initial state is not well defined. We propose a method of bootstrapping the Hugoniot from OFMD to the Hugoniot from KSMD between 10 and 20 eV, where the two methods are in agreement. The combination of KSMD and OFMD allows construction of a first-principles Hugoniot from the initial state to 1000 eV. Theoretical shock-compression results are in good agreement with available experimental data and exhibit the appropriate high-temperature limits. We show that a unified KSMD-OFMD Hugoniot can be used to assess the quality of the existing equation-of-state (EOS) models and inform better EOS models based on justifiable physics.

14.
Article in English | MEDLINE | ID: mdl-23848620

ABSTRACT

The ion-ion coupling parameter Γ is estimated for tungsten along the ρ=40 g/cm(3) isochore corresponding to twice the normal density with temperatures ranging from 10 eV to 5 keV. Using a variety of approaches from a spherical Thomas-Fermi ion to a full three-dimensional orbital-free method, we show that along an isochore the effective ionic coupling parameter is almost constant over a wide range of temperatures (in our case Γ~/=20) due to the competition between rising temperatures and increased ionization. This Γ-plateau effect depends on the chosen density and is well delineated at normal density but almost disappears at five times the normal density. This effect could be used to obtain well-defined and predictable experimental conditions.

15.
Phys Chem Chem Phys ; 15(12): 4355-66, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23416704

ABSTRACT

A statistical methodology was applied to the simultaneous calibration and validation of thermodynamic models for the uptake of CO2 in mesoporous silica-supported amines. The methodology is Bayesian, and follows the procedure introduced by Kennedy and O'Hagan. One key aspect of the application presented is the use of quantum chemical calculations to define prior probability distributions for physical model parameters. Inclusion of this prior information proved to be crucial to the identifiability of model parameters against experimental thermogravimetric data. Through the statistical analysis, a quantitative assessment of the accuracy of various quantum chemical methods is produced. Another important aspect of the current approach is the conditioning of the model form discrepancy - a critical component of the Kennedy and O'Hagan methodology - to the experimental data in such a mannner that it becomes an implicit function of the model parameters and thereby connected with the posterior distribution. It is shown that the inclusion of prior information in the analysis leads to a shifting of uncertainty from the posterior distribution for model parameters to this conditioned model form discrepancy. Prospects for more accurate model predictions and propagation of uncertainty in upscaling and extrapolation through a "model-plus-discrepancy" approach are discussed. The synthesis methods and thermogravimetric characterization of hybrid grafted/impregnated mesoporous silica-supported amine sorbents are presented, along with the details of the quantum chemical study, which shows that a carbamic acid-base acceptor complex is the most stable form of adsorbed CO2 in both alkanol- and ethyleneamines.

16.
Article in English | MEDLINE | ID: mdl-24483576

ABSTRACT

Extending the well-known Thomas-Fermi Z-scaling laws to the Coulomb coupling parameter, we investigate the stabilization of the ionic coupling in isochoric heating [Clérouin et al., Phys. Rev. E 87, 061101 (2013)]. This stabilization is restricted to a domain in atomic number Z, temperature, and density, including strong limitations on high couplings, that can only be obtained for high-Z elements. Contact is made with recent isochoric heating experiments. The consequences for corresponding states with respect to ionic coupling are also quantified via orbital free molecular dynamics simulations. This opens avenues for future isochoric heating experiments.

17.
Phys Chem Chem Phys ; 9(37): 5121-6, 2007 Oct 07.
Article in English | MEDLINE | ID: mdl-17878988

ABSTRACT

A decomposition mechanism is proposed for 2,2-dinitro-1-methoxypropane, a compound whose structure resembles the nitroplasticizer (NP) component of plastic-bonded explosive PBX 9501. A library of key reactions is presented and is based on the results of NP aging studies and existing decomposition mechanisms for similar nitro compounds. Density functional electronic structure calculations on these reactions were used to develop a decomposition mechanism at lower temperatures, which begins with HONO elimination and leads to intermediates that can produce CO, CO(2), NO, and N(2)O gases. These gases were observed in low temperature (48 to 64 degrees C) aging studies of NP. A high temperature mechanism involving NO(2) scission is compared to a thermal decomposition mechanism determined by simultaneous thermogravimetric modulated beam mass spectrometry. The calculated energy barriers for HONO elimination and NO(2) scission in the gas phase are reported and compared to experimental results.

18.
J Chem Phys ; 122(23): 234912, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16008492

ABSTRACT

We have developed a coarse-grained multiscale molecular simulation method for soft matter systems that directly incorporates stereochemical information. We divide the material into disjoint groups of atoms or particles that move as separate rigid bodies; we call these groups "rigid blobs," hence the name coarse-grained rigid blob model. The method is enabled by the construction of transferable interblob potentials that approximate the net intermolecular interactions, as obtained from ab initio electronic structure calculations, other all-atom empirical potentials, experimental data, or any combination of the above. We utilize a multipolar expansion to obtain the interblob potential-energy functions. The series, which contains controllable approximations that allow us to estimate the errors, approaches the original intermolecular potential as the number of terms increases. Using a novel numerical algorithm, we can calculate the interblob potentials very efficiently in terms of a few interaction moment tensors. This reduces the labor well beyond what is required in standard molecular-dynamics calculations and allows large-scale simulations for temporal scales commensurate with characteristic times of nano- and mesoscale systems. A detailed derivation of the formulas is presented, followed by illustrative applications to several systems showing that the method can effectively capture realistic microscopic details and can easily extend to large-scale simulations.

19.
J Chem Phys ; 120(12): 5558-65, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15267431

ABSTRACT

We have derived a new multipolar expansion for intermolecular potential-energy functions with applications in molecular physics, theoretical chemistry, and mathematical physics. The new formulation employs a separation of radial and angular terms with a simple index structure that leads to computational efficiency and ease of physical interpretation. For the case of the Coulomb interaction, we compare the present formulation with two conventional multipole expansions: the Cartesian tensor and the irreducible spherical tensor expansions. The new formalism leads to efficient numerical algorithms that are useful for general applications beyond intermolecular potentials. In addition to the electrostatic Coulomb interaction, we illustrate the formalism with applications to special function theory and a bipolar expansion involved in potential theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...