Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(23): 5700-5712, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38822794

ABSTRACT

We investigate the reactive dissolution process of poly(sulfur nitride) (SN)x in the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate [EMIm][OAc] in comparison to the process of elemental sulfur in the same IL. It has been known from the literature that during the reaction of S8 with [EMIm][OAc], the respective thione is formed via a radical mechanism. Here, we present new results on the kinetics of the formation of the respective imidazole thione (EMImS) via the hexasulfur dianion [S6]2- and the trisulfur radical anion [S3]•-. We can show that [S6]2- is formed first, which dissociates then to [S3]•-. Also, long-term stable radicals occur, which are necessary side products provided in a reaction scheme. During the reaction of [EMIm][OAc] with (SN)x chains, two further products can be identified, one of which is the corresponding imine. The reactions are followed by time-resolved NMR spectroscopic methods that showed the corresponding product distributions and allowed the assignment of the individual signals. In addition, continuous-wave (CW) EPR and UV/vis spectroscopic measurements show the course of the reactions. Another significant difference in both reactions is the formation of a long-term stable radical in the sulfur-IL system, which remains active over 35 days, while for the (SN)x-IL system, we can determine a radical species only with the spin trap 5,5-dimethyl-1-pyrrolin-N-oxide, which indicates the existence of short-living radicals. Since the molecular dynamics are restricted based on the EPR spectra, these radicals must be large.

2.
Chemistry ; 29(68): e202302585, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37698241

ABSTRACT

A living topochemical ring-opening polymerization (ROP) of achiral amino-acid N-carboxyanhydrides (NCAs) is reported. Single crystals of the NCAs of α-aminoisobutyric acid (Aib) and 1-aminocyclohexanecarboxylic acid (ACHC) were grown, allowing a ring-opening polymerization macroscopically induced by amines. The single crystals could be polymerized at temperatures from 25-50 °C after physically contacting the amine-based initiator with the crystals. Topochemical polymerization of the crystals was proven by MALDI-ToF MS and XRD, generating polymers with chain lengths of up to 40 units and a complete affixation of the initiating amine at the polymer's head. Due to the proper alignment of the reacting groups in the crystal, longer polymer chains with improved purities can be reached, as chain-transfer is reduced as compared to solution polymerization. Simple purification of the polymers can be achieved by separation of the unreacted NCA via dispersion in acetonitrile. Overall, this method enables the preparation of polymers with higher chain length and purities at mild conditions, finally demonstrating a crystal-based ring opening polymerization.

3.
Molecules ; 28(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446870

ABSTRACT

Malaria is one of the major life-threatening health problems worldwide. Artesunate is the most potent antimalarial drug to combat severe malaria. However, development of drug resistance, short plasma half-life, and poor bioavailability limit the efficacy of this drug. Here, we applied the dimerization concept to synthesize dimeric artesunate glycerol monocaprylate conjugate (D-AS-GC) by conjugating artesunate (AS) with glycerol monocaprylate (GC) via esterification reaction. D-AS-GC conjugate, AS, and GC were well characterized by 1H NMR, attached proton test (APT) 13C NMR and 2D NMR spectroscopy. D-AS-GC conjugate was further analyzed by ESI-TOF MS. Finally, a series of nanoemulsion preconcentrate (F1-F6) of D-AS-GC was prepared by mixing different ratios of oil and surfactant/cosurfactant and evaluated after dilution with an aqueous phase. The optimized formulation (F6) exhibits a clear nanoemulsion and the hydrodynamic diameter of the dispersed phase was determined by DLS and DOSY NMR spectroscopy. The morphology of the nanoemulsion droplets of F6 was investigated by AFM, which revealed the formation of tiny nanoemulsion droplets on a hydrophilic mica substrate. Moreover, using a less polar silicon wafer led to the formation of larger droplets with a spherical core shell-like structure. Overall, the rational design of the dimeric artesunate-based nanoemulsion preconcentrate could potentially be used in more efficient drug delivery systems.


Subject(s)
Malaria , Nanoparticles , Humans , Artesunate , Glycerol , Nanoparticles/chemistry , Drug Delivery Systems , Malaria/drug therapy , Polymers/therapeutic use , Emulsions/chemistry
4.
J Phys Chem B ; 127(9): 2066-2082, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36820510

ABSTRACT

Nanocomposite solid polymer electrolytes (NSPEs) with PEO as the matrix and (i) GO or (ii) GO-graft-PEG6k or (iii) GO-graft-PEG6k-block-P(MA-POSS) as nanofillers have been fabricated to elucidate the impact of the filler morphology on the lithium ion conductivity. GO-graft-PEG6k was obtained by grafting PEG6k onto GO via esterification. GO-graft-PEG6k-block-P(MA-POSS) was prepared via surface-initiated atom transfer radical polymerization. Fourier-transform infrared spectroscopy revealed enhanced salt dissociation and complexation between the filler and PEO host that could be attributed to Lewis acid-base interactions. Electrochemical impedance spectroscopy revealed the improved ion conductivity of the fabricated NSPEs as compared with the pristine PEO-LiClO4. As an example, at 50 °C, the ion conductivity increased to 4.01 × 10-5 and 6.31 × 10-5 S cm-1 with 0.3% GO and 0.3% GO-graft-PEG6k, respectively, from 2.36 × 10-5 S cm-1 of PEO-LiClO4, suggesting that the filler with brush-like architecture (GO-graft-PEG6k) is more efficient in enhancing the ion conductivity. Further increase in filler content resulted in lowering of the ion conductivity that could be ascribed to aggregation of the filler. The most dramatic impact on conductivity was observed with the incorporation of brush-like GO-graft-PEG6k-block-P(MA-POSS) as a nanofiller (3.0 × 10-4 S cm-1 at 50 °C with 1.0 wt % filler content). The increase in ion conductivity in the current systems, as opposed to the conventional view, could not be correlated with the content of the amorphous phase of the matrix. The conduction mechanism is still unclear; nevertheless, it could be assumed that in addition to the ion conduction through the PEO matrix, the filler forms additional low-energy ion conducting channels at its interface with the matrix. The pendent POSS nanocages of GO-graft-PEG6k-block-P(MAPOSS) might probably increase the free volume at the interface with the matrix that is associated with higher chain and ion mobility, thus further enhancing the ion conductivity as compared with GO and GO-graft-PEG6k. The faster ion dynamics in 1.0 wt % GO-graft-PEG6k-block-P(MAPOSS) NSPEs has also been verified by the dielectric relaxation studies. Thus, integration of both the PEG and POSS nanocages into GO-grafted brush-like architecture offers a new tool for tuning the lithium ion conductivity for potential Li ion battery applications.

5.
Gels ; 10(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38247740

ABSTRACT

Hydrogels were prepared by Steglich esterification and by crosslinking pre-synthesized poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG) using different-chain-length-based disuccinyl PEG. PSA and PSA-g-mPEG were investigated for polymer degradation as a function of time at different temperatures. PSA-g-mPEG hydrogels were then evaluated for their most crucial properties of swelling that rendered them suitable for many pharmaceutical and biomedical applications. Hydrogels were also examined for their Sol-Gel content in order to investigate the degree of cross-linking. Physical structural parameters of the hydrogels were theoretically estimated using the modified Flory-Rehner theory to obtain approximate values of polymer volume fraction, the molecular weight between two crosslinks, and the mesh size of the hydrogels. X-ray diffraction was conducted to detect the presence or absence of crystalline regions in the hydrogels. PSA-g-mPEG hydrogels were then extensively examined for higher and lower molecular weight solute release through analysis by fluorescence spectroscopy. Finally, the cytotoxicity of the hydrogels was also investigated using a resazurin reduction assay. Experimental results show that PSA-g-mPEG provides an option as a biocompatible polymer to be used for pharmaceutical applications.

6.
J Biotechnol ; 346: 1-10, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-35038459

ABSTRACT

Erythropoietin (EPO) is a glycoprotein hormone that has been used to treat anemia in patients with chronic kidney disease and in cancer patients who are receiving chemotherapy. Here, we investigated the accessibility of the glutamine (Gln, Q) residues of recombinant human erythropoietin (rHuEPO) towards a thermoresistant variant microbial transglutaminase (mTGase), TG16 with the aim of developing novel rHuEPO conjugates that may potentially enhance its biological efficacy. As a model bioconjugation, we studied the reactivity of rHuEPO towards TG16 with a low molar mass amine group containing substrate, monodansyl cadaverine (MDC). The reactions were carried out at a Tm of 54.3 °C, the transition temperature of rHuEPO. Characterization by SDS-PAGE and mass spectrometry confirmed the conjugates formation. Then, we examined the conjugation of rHuEPO with a biodegradable and biocompatible polyester, poly(D-sorbitol adipate) (PDSA). To achieve this, PDSA was enzymatically synthesized using lipase B from Candida antartica (CAL-B), chemically modified with side chains having free primary amine (NH2) groups that can be acyl acceptor substrate of TG16, thoroughly characterized by 1H NMR spectroscopy, and then applied for the TG16-mediated conjugation reaction with rHuEPO. rHuEPO conjugates generated by this approach were identified by SDS-PAGE proving that the amine-grafted PDSA is accepted as a substrate for TG16. The successful conjugation was further verified by the detection of high molar mass fluorescent bands after labelling of amine-grafted PDSA with rhodamine B-isothiocyanate. Overall, this enzymatic procedure is considered as an effective approach to prepare biodegradable rHuEPO-polymer conjugates even in the presence of N- and O-glycans.


Subject(s)
Anemia , Erythropoietin , Anemia/drug therapy , Humans , Polyesters , Recombinant Proteins/therapeutic use , Transglutaminases
7.
Int J Mol Sci ; 22(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34884482

ABSTRACT

Carbonyl-centered hydrogen bonds with various strength and geometries are often exploited in materials to embed dynamic and adaptive properties, with the use of thiocarbonyl groups as hydrogen-bonding acceptors remaining only scarcely investigated. We herein report a comparative study of C2=O and C2=S barbiturates in view of their differing hydrogen bonds, using the 5,5-disubstituted barbiturate B and the thiobarbiturate TB as model compounds. Owing to the different hydrogen-bonding strength and geometries of C2=O vs. C2=S, we postulate the formation of different hydrogen-bonding patterns in C2=S in comparison to the C2=O in conventional barbiturates. To study differences in their association in solution, we conducted concentration- and temperature-dependent NMR experiments to compare their association constants, Gibbs free energy of association ∆Gassn., and the coalescence behavior of the N-H‧‧‧S=C bonded assemblies. In Langmuir films, the introduction of C2=S suppressed 2D crystallization when comparing B and TB using Brewster angle microscopy, also revealing a significant deviation in morphology. When embedded into a hydrophobic polymer such as polyisobutylene, a largely different rheological behavior was observed for the barbiturate-bearing PB compared to the thiobarbiturate-bearing PTB polymers, indicative of a stronger hydrogen bonding in the thioanalogue PTB. We therefore prove that H-bonds, when affixed to a polymer, here the thiobarbiturate moieties in PTB, can reinforce the nonpolar PIB matrix even better, thus indicating the formation of stronger H-bonds among the thiobarbiturates in polymers in contrast to the effects observed in solution.


Subject(s)
Barbiturates/chemistry , Polymers/chemistry , Thiobarbiturates/chemistry , Crystallization , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Temperature
8.
Langmuir ; 37(45): 13399-13408, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34724380

ABSTRACT

Surface pressure versus mean molecular area isotherms of Langmuir films of a hybrid diblock copolymer of poly(ethylene glycol) (PEG) and poly(methacrylo polyhedral oligomeric silsesquioxane) P(MA-POSS) together with Brewster angle microscopy reveal details of the phase transitions. The formation of a periodic wrinkling pattern in collapsed films is observed by epifluorescence microscopy after applying several compression-expansion cycles above the surface pressure of ≈18 mN/m. The wrinkle formation is reversible upon compression and expansion of the Langmuir films. Two distinct orientations of POSS molecules are assumed in Langmuir films upon compression, vertically for chains close to the water surface and horizontally orientated upper layers with significant amounts of PEG in between them. Thus, the wrinkling forms mainly in the top stiffer MA-POSS blocks above a certain compressional stress. The wrinkles disappear during the Langmuir-Blodgett (LB) transfer. Nevertheless, atomic force microscopy and grazing incidence wide-angle X-ray scattering experiments reveal the formation of highly ordered POSS molecules in LB films.

9.
Gels ; 7(1)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672681

ABSTRACT

Polymer networks were prepared by Steglich esterification using poly(sorbitol adipate) (PSA) and poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG12) copolymer. Utilizing multi-hydroxyl functionalities of PSA, poly(ethylene glycol) (PEG) was first grafted onto a PSA backbone. Then the cross-linking of PSA or PSA-g-mPEG12 was carried out with disuccinyl PEG of different molar masses (Suc-PEGn-Suc). Polymers were characterized through nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The degree of swelling of networks was investigated through water (D2O) uptake studies, while for detailed examination of their structural dynamics, networks were studied using 13C magic angle spinning NMR (13C MAS NMR) spectroscopy, 1H double quantum NMR (1H DQ NMR) spectroscopy, and 1H pulsed field gradient NMR (1H PFG NMR) spectroscopy. These solid state NMR results revealed that the networks were composed of a two component structure, having different dipolar coupling constants. The diffusion of solvent molecules depended on the degree of swelling that was imparted to the network by the varying chain length of the PEG based cross-linking agent.

10.
Polymers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322501

ABSTRACT

The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems.

11.
Polymers (Basel) ; 12(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086637

ABSTRACT

Poly(ethylene) (PE) is a commonly used semi-crystalline polymer which, due to the lack of polar groups in the repeating unit, is not able to form Langmuir or Langmuir-Blodgett (LB) films. This problem can be solved using PEs with hydrophilic groups arranged at regular distances within the polymer backbone. With acyclic diene metathesis (ADMET) polymerization, a tool for precise addition of polar groups after a certain interval of methylene sequence is available. In this study, we demonstrate the formation of Langmuir/LB films from two different PEs with regular phosphoester groups, acting as crystallization defects in the main chain. After spreading the polymers from chloroform solution on the water surface of a Langmuir trough and solvent evaporation, the surface pressure is recorded during compression under isothermal condition. These π-A isotherms, surface pressure π vs. mean area per repeat unit A, show a plateau zone at surface pressures of ~ (6 to 8) mN/m, attributed to the formation of crystalline domains of the PEs as confirmed by Brewster angle and epifluorescence microscopy. PE with ethoxy phosphoester defects (Ethoxy-PPE) forms circular shape domains, whereas Methyl-PPE-co-decadiene with methyl phosphoester defects and two different methylene sequences between the defects exhibits a film-like morphology. The domains/films are examined by atomic force microscopy after transferring them to a solid support. The thickness of the domains/films is found in the range from ~ (2.4 to 3.2) nm depending on the transfer pressure. A necessity of chain tilt in the crystalline domains is also confirmed. Grazing incidence X-ray scattering measurements in LB films show a single Bragg reflection at a scattering vector qxy position of ~ 15.1 nm-1 known from crystalline PE samples.

12.
Molecules ; 25(15)2020 Aug 02.
Article in English | MEDLINE | ID: mdl-32748878

ABSTRACT

We present 1,2,3-triazolium- and imidazolium-based ionic liquids (ILs) with aromatic anions as a new class of cellulose solvents. The two anions in our study, benzoate and salicylate, possess a lower basicity when compared to acetate and therefore should lead to a lower amount of N-heterocyclic carbenes (NHCs) in the ILs. We characterize their physicochemical properties and find that all of them are liquids at room temperature. By applying force field molecular dynamics (MD) simulations, we investigate the structure and dynamics of the liquids and find strong and long-lived hydrogen bonds, as well as significant π-π stacking between the aromatic anion and cation. Our ILs dissolve up to 8.5 wt.-% cellulose. Via NMR spectroscopy of the solution, we rule out chain degradation or derivatization, even after several weeks at elevated temperature. Based on our MD simulations, we estimate the enthalpy of solvation and derive a simple model for semi-quantitative prediction of cellulose solubility in ILs. With the help of Sankey diagrams, we illustrate the hydrogen bond network topology of the solutions, which is characterized by competing hydrogen bond donors and acceptors. The hydrogen bonds between cellulose and the anions possess average lifetimes in the nanosecond range, which is longer than found in common pure ILs.


Subject(s)
Anions/chemistry , Cellulose/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Triazoles/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Solubility , Solvents/chemistry
13.
Chem Phys Lipids ; 230: 104918, 2020 08.
Article in English | MEDLINE | ID: mdl-32417099

ABSTRACT

The monolayer behavior of a l-DPPC derivative with a single fluorination in one of its terminal methyl groups (F-DPPC) at air-water interface was investigated by epifluorescence microscopy and infrared reflection absorption spectroscopy (IRRAS). Epifluorescence microscopy was utilized to study the shape and morphology of liquid-condensed (LC) domains observed upon compression of the film. IRRAS was employed for the determination of chain order and orientation. The shapes of LC-domains in a monolayer of F-DPPC are more dependent on the rate of compression than those of DPPC. The LC domains of F-DPPC display pronounced fractal growth patterns depending on the compression speed. The evolution of LC domain occurs under dominating electrostatic dipolar forces in F-DPPC. IRRAS measurements with the analysis of the frequency of the methylene stretching vibrations as a function of film compression show that the acyl chains in an F-DPPC monolayer in the LE-phase are more disordered than those in a DPPC film. The reason for the higher chain disorder in LE phase F-DPPC monolayers is a back folding of the fluorinated sn-2 chain terminus towards the air-water interface leading to larger molecular area requirement. Angular dependent IRRA spectra of monolayers at a surface pressure of 30 mN m-1 show that in the LC phase DPPC and F-DPPC exhibit a similar tilt of the acyl chains of ca. 28-30 ° relative to the surface normal. F-DPPC is ideally miscible with l-DPPC-d62 having the same chirality, as indicated by epifluorescence images and by IRRAS. However, the LC domains in an equimolar mixture of d-DPPC and F-DPPC having opposite chirality show multi-lobed complex domain patterns indicating chiral phase separation within LC domains.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Microscopy, Fluorescence , Phosphatidylcholines/chemistry , Spectrophotometry, Infrared , Halogenation , Kinetics , Mechanical Phenomena , Stereoisomerism
14.
J Pharm Sci ; 109(2): 981-991, 2020 02.
Article in English | MEDLINE | ID: mdl-31682828

ABSTRACT

Protein-polymer conjugates have been used as therapeutics because they exhibit frequently higher stability, prolonged in vivo half-life, and lower immunogenicity compared with native proteins. The first part of this report describes the enzymatic synthesis of poly(glycerol adipate) (PGA(M)) by transesterification between glycerol and dimethyl adipate using lipase B from Candida antarctica. PGA(M) is a hydrophilic, biodegradable but water insoluble polyester. By acylation, PGA(M) is modified with 6-(Fmoc-amino)hexanoic acid and with hydrophilic poly(ethylene glycol) side chains (mPEG12) rendering the polymer highly water soluble. This is followed by the removal of protecting groups, fluorenylmethyloxycarbonyl, to generate polyester with primary amine groups, namely PGA(M)-g-NH2-g-mPEG12. 1H NMR spectroscopy, FTIR spectroscopy, and gel permeation chromatography have been used to determine the chemical structure and polydispersity index of PGA(M) before and after modification. In the second part, we discuss the microbial transglutaminase-mediated conjugation of the model protein dimethylcasein with PGA(M)-g-NH2-g-mPEG12 under mild reaction conditions. SDS-PAGE proves the protein-polyester conjugation.


Subject(s)
Amines , Polyesters , Basidiomycota , Caseins , Transglutaminases
15.
Methods Enzymol ; 627: 57-97, 2019.
Article in English | MEDLINE | ID: mdl-31630748

ABSTRACT

Enzymatic polymerization is an environmentally benign process for the synthesis of biodegradable and biocompatible polymers. The regioselectivity of lipase B from Candida Antarctica (CAL-B) produces linear functional polyesters without protection-deprotection steps. In this work, two different methods for the enzymatic synthesis of functional polyesters based on renewable resources, as, e.g., glycerol, using CAL-B are outlined. Poly(glycerol adipate) was synthesized by enzymatic transesterification between glycerol and divinyl adipate or dimethyl adipate. Methods are also reported to graft poly(glycerol adipate) with different amounts of hydrophobic side chains (lauric, stearic, behenic, and oleic acids) and hydrophilic poly(ethylene glycol) side chains, respectively. The hydrophilicity or lipophilicity of grafted polyesters is well controlled by changing the degree of grafting of hydrophilic and hydrophobic side chains. The multiple grafted polyesters are characterized by NMR spectroscopy, differential scanning calorimetry, gel permeation chromatography, and X-ray diffraction. Furthermore, the self-assembly of the graft copolymers in water and their use as steric stabilizers for cubosomes are discussed. For this purpose mainly dynamic light scattering and small angle X-ray scattering have been employed.


Subject(s)
Adipates/metabolism , Biocatalysis , Glycerol/metabolism , Polyesters/metabolism , Calorimetry, Differential Scanning , Chromatography, Gel , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Polyesters/chemical synthesis , Polyethylene Glycols , Polymerization , X-Ray Diffraction
16.
J Phys Chem B ; 123(18): 3994-4003, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30763092

ABSTRACT

We present first results on triazolium-based ionic liquids (ILs) as a novel class of nonderivatizing solvents for cellulose. Despite their chemical similarity to imidazolium cations, the 1,2,3-triazolium cation lacks the isolated ring proton, leading to reduced formation of N-heterocyclic carbenes (NHCs) and therefore to lower reactivity and less unwanted side reactions. We synthesized six ILs based on 1,2,3-triazolium and 1,2,4-triazolium cations. The acetates are room-temperature ionic liquids and dissolve a similar amount of cellulose as the corresponding imidazolium salt. From NMR spectroscopy of the solution, we rule out polymer degradation. The cellulose solubility rises with increasing anion basicity, while being almost independent of the cation. We perform molecular dynamics simulations and compute enthalpies of solvation, which quantitatively fit the experimental solubilities. Trajectory analysis reveals strong hydrogen bonds between acetate anions and cellulose hydroxyl groups, while the cations do not form strong hydrogen bonds with cellulose. Thus, the simulations provide an atomistic explanation of our experimental observations.

17.
Langmuir ; 34(43): 12759-12763, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30285451

ABSTRACT

We report the thin layer crystallization of high-molar mass poly(ethylene oxide) (PEO) on a liquid support using a 4 M K2CO3 aqueous solution as a subphase. Because of the Hofmeister effect, PEO does not dissolve and remains at the surface during compression on a Langmuir trough. The transition from the flat pancake conformation upon compression of the spread polymer film to an entangled monolayer results in a plateau region of the Langmuir isotherm. Using grazing incidence wide-angle X-ray scattering, the final crystallization of PEO was observed, and the crystal orientation was determined. The fold surface was (209̅), that is, the helix axis has a tilt angle of 2.9° to the normal vector of the water surface.

18.
Materials (Basel) ; 11(9)2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30223444

ABSTRACT

1,2,3-Triazolium salts are an important class of materials with a plethora of sophisticated applications. A series of three novel 1,3-dimethyl-1,2,3-triazolium salts with fluorine, containing anions of various size, is synthesized by methylation of 1,2,3-triazole. Their ion conductivity is measured by impedance spectroscopy, and the corresponding ionicities are determined by diffusion coefficients obtained from ¹H and 19F pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy data, revealing that the anion strongly influences their ion conductive properties. Since the molar ion conductivities and ionicities of the 1,3-dimethyl-1,2,3-triazolium salts are enhanced in comparison to other 1,2,3-triazolium salts with longer alkyl substituents, they are promising candidates for applications as electrolytes in electrochemical devices.

19.
Sci Rep ; 8(1): 2154, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29391464

ABSTRACT

Fluorocarbon amphiphiles are anthropogenic substances widely used in diverse applications such as food packaging, clothing or cookware. Due to their widespread use and non-biodegradability, these chemicals are now ubiquitous in the natural world with high propensity to bioaccumulate in biological membranes, wherein they may affect microscopic properties. Here, we test the hypothesis that a typical fluorocarbon amphiphile can affect lipid membranes similarly to cholesterol by investigating the effect of 1H,1H,2H,2H-perfluoro-1-decanol (8:2 FTOH) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes. Using solid-state nuclear magnetic resonance spectroscopy, differential scanning calorimetry and confocal microscopy, we present a consistent set of independent experimental evidences supporting this hypothesis, namely that upon incorporation of 8:2 FTOH, (i) a condensing effect on the acyl chains occurs in the fluid phase, (ii) coexistence of two membrane phases is observed below melting, and (iii) the melting temperature of DPPC varies no more than approximately ±1 °C up to a concentration of 40 mol% of 8:2 FTOH. The condensing effect is quantified by means of advanced dipolar recoupling solid-state NMR experiments and is found to be of approximately half the magnitude of the cholesterol effect at the same concentration.


Subject(s)
Alcohols/chemistry , Cell Membrane/chemistry , Cholesterol/chemistry , Fluorocarbons/chemistry , Lipid Bilayers/chemistry , Phospholipids/chemistry
20.
Polymers (Basel) ; 10(9)2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30960885

ABSTRACT

Recent developments in synthetic pathways as simple reversible-deactivation radical polymerization (RDRP) techniques and quantitative post-polymerization reactions, most notoriously 'click' reactions, leading to segmented copolymers, have broadened the molecular architectures accessible to polymer chemists as a matter of routine. Segments can be blocks, grafted chains, branchings, telechelic end-groups, covalently attached nanoparticles, nanodomains in networks, even sequences of random copolymers, and so on. In this review, we describe the variety of the segmented synthetic copolymers landscape from the point of view of their chemical affinity, or synonymous philicity, in bulk or with their surroundings, such as solvents, permeant gases, and solid surfaces. We focus on recent contributions, current trends, and perspectives regarding polyphilic copolymers, which have, in addition to hydrophilic and lipophilic segments, other philicities, for example, towards solvents, fluorophilic entities, ions, silicones, metals, nanoparticles, and liquid crystalline moieties.

SELECTION OF CITATIONS
SEARCH DETAIL
...