Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 9(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466701

ABSTRACT

The live genetically-engineered oral rabies virus (RABV) variant SPBN GASGAS induces long-lasting immunity in foxes and protection against challenge with an otherwise lethal dose of RABV field strains both after experimental oral and parenteral routes of administration. Induction of RABV-specific binding antibodies and immunoglobulin isotypes (IgM, total IgG, IgG1, IgG2) were comparable in orally and parenterally vaccinated foxes. Differences were only observed in the induction of virus-neutralizing (VNA) titers, which were significantly higher in the parenterally vaccinated group. The dynamics of rabies-specific antibodies pre- and post-challenge (365 days post vaccination) suggest the predominance of type-1 immunity protection of SPBN GASGAS. Independent of the route of administration, in the absence of IgG1 the immune response to SPBN GAGAS was mainly IgG2 driven. Interestingly, vaccination with SPBN GASGAS does not cause significant differences in inducible IFN-γ production in vaccinated animals, indicating a relatively weak cellular immune response during challenge. Notably, the parenteral application of SPBN GASGAS did not induce any adverse side effects in foxes, thus supporting safety studies of this oral rabies vaccine in various species.

2.
Sci Rep ; 10(1): 2919, 2020 02 19.
Article in English | MEDLINE | ID: mdl-32076025

ABSTRACT

Oral rabies vaccination (ORV) is highly effective in foxes and raccoon dogs, whereas for unknown reasons the efficacy of ORV in other reservoir species is less pronounced. To investigate possible variations in species-specific cell tropism and local replication of vaccine virus, different reservoir species including foxes, raccoon dogs, raccoons, mongooses, dogs and skunks were orally immunised with a highly attenuated, high-titred GFP-expressing rabies virus (RABV). Immunofluorescence and RT-qPCR screenings revealed clear differences among species suggesting host specific limitations to ORV. While for responsive species the palatine tonsils (tonsilla palatina) were identified as a main site of virus replication, less virus dissemination was observed in the tonsils of rather refractory species. While our comparison of vaccine virus tropism emphasizes the important role that the tonsilla palatina plays in eliciting an immune response to ORV, our data also indicate that other lymphoid tissues may have a more important role than originally anticipated. Overall, these data support a model in which the susceptibility to oral live RABV vaccine infection of lymphatic tissue is a major determinant in vaccination efficacy. The present results may help to direct future research for improving vaccine uptake and efficacy of oral rabies vaccines under field conditions.


Subject(s)
Disease Reservoirs/virology , Lymphoid Tissue/immunology , Mucous Membrane/immunology , Rabies Vaccines/immunology , Rabies/immunology , Vaccination , Administration, Oral , Animals , Antibodies, Viral/immunology , Foxes/immunology , Foxes/virology , Green Fluorescent Proteins/metabolism , Lymphoid Tissue/virology , Mucous Membrane/virology , Organ Specificity , Palatine Tonsil/immunology , Palatine Tonsil/virology , RNA, Viral/genetics , Rabies/blood , Rabies/veterinary , Rabies/virology , Rabies virus/physiology , Species Specificity , Tropism , Viral Load , Virus Replication/physiology
3.
Viruses ; 11(9)2019 08 27.
Article in English | MEDLINE | ID: mdl-31461981

ABSTRACT

: To evaluate the long-term immunogenicity of the live-attenuated, oral rabies vaccine SPBN GASGAS in a full good clinical practice (GCP) compliant study, forty-six (46) healthy, seronegative red foxes (Vulpesvulpes) were allocated to two treatment groups: group 1 (n = 31) received a vaccine bait containing 1.7 ml of the vaccine of minimum potency (106.6 FFU/mL) and group 2 (n = 15) received a placebo-bait. In total, 29 animals of group 1 and 14 animals of group 2 were challenged at 12 months post-vaccination with a fox rabies virus isolate (103.0 MICLD50/mL). While 90% of the animals offered a vaccine bait resisted the challenge, only one animal (7%) of the controls survived. All animals that had seroconverted following vaccination survived the challenge infection at 12 months post-vaccination. Rabies specific antibodies could be detected as early as 14 days post-vaccination. Based on the kinetics of the antibody response to SPBN GASGAS as measured in ELISA and RFFIT, the animals maintained stable antibody titres during the 12-month pre-challenge observation period at a high level. The results indicate that successful vaccination using the oral route with this new rabies virus vaccine strain confers long-term duration of immunity beyond one year, meeting the same requirements as for licensure as laid down by the European Pharmacopoeia.


Subject(s)
Antibodies, Viral/blood , Rabies Vaccines/administration & dosage , Rabies virus/immunology , Rabies/veterinary , Administration, Oral , Animals , Foxes , Immunogenicity, Vaccine , Rabies/immunology , Rabies/prevention & control , Vaccination/veterinary , Vaccines, Attenuated/administration & dosage
4.
Vaccine ; 37(33): 4750-4757, 2019 08 02.
Article in English | MEDLINE | ID: mdl-29042202

ABSTRACT

To test the immunogenicity and efficacy of a new oral rabies virus vaccine strain SPBN GASGAS in wildlife target species, one group of foxes and two groups of raccoon dogs were offered a bait containing 1.7 ml of the vaccine (106.6 FFU/ml; 106.8 FFU/dose) and subsequently challenged approximately 180 days later with a fox rabies virus isolate. One group of raccoon dogs (n=30) received the same challenge dose (100.7 MICLD50/ml) as the red foxes (n=29). The other group with raccoon dogs (n=28) together with 8 animals that received the vaccine dose by direct instillation into the oral cavity (DIOC) were infected with a 40-fold higher dose of the challenge virus (102.3 MICLD50/ml). All but one of the 29 vaccinated foxes survived the challenge infection; meanwhile all 12 control foxes succumbed to rabies. Twenty-eight of 30 vaccinated raccoon dogs challenged with the same dose survived the infection, however only six of 12 control animals succumbed. When the higher challenge dose was administered, all 12 control animals died from rabies and all 36 vaccinated animals (28 baited plus 8 DIOC) survived. Blood samples were collected at different time points post vaccination and examined by both RFFIT and ELISA. The kinetics of the measured immune response was similar for both species, although in RFFIT slightly higher values were observed in foxes than in raccoon dogs. However, the immune response as measured in ELISA was identical for both species. The oral rabies virus vaccine SPBN GASGAS meets the efficacy requirements for live rabies virus vaccines as laid down by the European Pharmacopoeia.


Subject(s)
Rabies Vaccines/therapeutic use , Rabies virus/immunology , Rabies virus/pathogenicity , Rabies/immunology , Rabies/prevention & control , Administration, Oral , Animals , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Foxes , Immunity, Humoral/physiology , Male , Rabies/virology , Rabies Vaccines/immunology , Raccoon Dogs
5.
Front Vet Sci ; 5: 91, 2018.
Article in English | MEDLINE | ID: mdl-29868616

ABSTRACT

In order to obtain Marketing Authorization for an oral rabies vaccine in the European Union, not only safety studies in the target species, red fox and raccoon dog, are required. Since baits are distributed unsupervised in the environment, specific safety studies in selected non-target species are compulsory. Furthermore, oral rabies vaccines are based on live, replication-competent viruses and thus distinct safety studies in the target species for such type of vaccines are also mandatory. Here, the results of these safety studies in target and selected non-target species for a 3rd generation oral rabies virus vaccine construct, SPBN GASGAS (Rabitec), are presented. The studies included the following species; red fox, raccoon dog, domestic dog, domestic cat, domestic pig, wild rodents. The following safety topics were investigated; overdose, repeated dose, dissemination, shedding, horizontal and vertical transmission. It was shown that SPBN GASGAS did not cause disease or any other adverse reaction in vaccinated animals and naïve contact animals. The vaccine did not disseminate within the host beyond the site of entry. No horizontal transmission was observed in wild rodents. In the target species, there was evidence that in a few cases horizontal transmission of vaccine virus could have occurred under these experimental conditions; most likely immediately after vaccine administration. The vaccine construct SPBN GASGAS meets therefore the latest revised minimal safety requirements as laid down in the European Pharmacopoeia.

6.
BMC Vet Res ; 14(1): 90, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534727

ABSTRACT

BACKGROUND: Oral vaccination of the small Indian mongoose against rabies has been suggested as a potential tool to eliminate mongoose-mediated rabies on several Caribbean islands. A recently developed oral rabies virus vaccine strain, SPBN GASGAS, has already been shown to be efficacious in this reservoir species. Since, all available oral rabies vaccines are based on replication-competent viruses and vaccine baits are distributed unsupervised in the environment, enhanced safety standards for such vaccine types are required. RESULTS: The results of safety studies, including overdose, repeated doses, dissemination and different routes of administration, in the target species are presented. It was shown that the construct was apathogenic, irrespective of dose and route of administration. Even when it was inoculated directly in the brain, it did not induce rabies infection. Furthermore, the vaccine strain did not spread within the target species after direct oral instillation beyond the site of entry. CONCLUSION: The vaccine strain SPBN GASGAS meets the safety requirements for live rabies virus vaccines in this target species, the small Indian mongoose.


Subject(s)
Herpestidae/immunology , Rabies Vaccines/therapeutic use , Rabies virus/immunology , Rabies/veterinary , Animals , Herpestidae/virology , Male , Rabies/immunology , Rabies/prevention & control , Rabies Vaccines/adverse effects , Rabies Vaccines/immunology
7.
Vaccine ; 36(6): 811-817, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29325820

ABSTRACT

A safety requirement for live vaccines is investigating possible shedding in recipients since the presence of replication competent vaccine in secretions could result in direct and indirect horizontal transmission. This is especially relevant for oral rabies vaccine baits that are deliberately distributed into the environment. In the current study, survival of an oral rabies virus vaccine, SPBN GASGAS, was examined in excretions from different target and non-target species; red fox, raccoon dog, small Indian mongoose, raccoon, striped skunk, domestic dog, domestic cat and domestic pig. Saliva - and (pooled) fecal samples collected at different time points after oral administration of the vaccine strain were examined for the presence of viral RNA (rt-PCR). All PCR-positive and a subset of PCR-negative samples were subsequently investigated for the presence of infectious virus by isolation in cell culture (RTCIT). Up to 7 days post vaccine administration viral RNA could be detected in 50 of 758 fecal samples but no infectious virus was detected in any of the examined PCR-positive fecal samples. In contrast, RNA-fragments were detected in 248 of 1053 saliva swabs for an extended period (up to 10 days) after vaccine administration, but viable virus was only present during the first hours post vaccine administration in 38 samples. No infectious vaccine virus was isolated in saliva swabs taken 24 h or more after vaccine administration. Hence, no active shedding of the vaccine virus SPBN GASGAS after oral administration occurred and the virus isolated during the initial hours was material originally administered and not a result of virus replication within the host. Thus, potential horizontal transmission of this vaccine virus is limited to a short period directly after vaccine bait uptake. It can be concluded that the environmental risks associated with shedding after distributing vaccine baits containing SPBN GASGAS are negligible.


Subject(s)
Rabies Vaccines/immunology , Rabies virus/immunology , Rabies/immunology , Rabies/virology , Virus Shedding , Administration, Oral , Animals , Foxes , Immunization , Mephitidae , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Raccoons , Swine
8.
J Wildl Dis ; 49(4): 1033-6, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24502736

ABSTRACT

The small Indian mongoose (Herpestes auropunctatus), a rabies reservoir species on several Islands in the Caribbean, was successfully immunized against rabies for the first time by offering animals a vaccine bait specifically designed for this small carnivore. The bait contained on average 0.6 mL of the genetically modified replication-competent rabies virus construct SPBN GASGAS (10(8.5) focus-forming units/mL). Three of four mongooses offered a bait developed an immune response above 0.5 IU/mL, but the response was less pronounced than in two animals offered the vaccine by direct oral instillation.


Subject(s)
Herpestidae , Rabies Vaccines/immunology , Rabies/veterinary , Administration, Oral , Animals , Rabies/prevention & control , Rabies Vaccines/administration & dosage
9.
Berl Munch Tierarztl Wochenschr ; 125(5-6): 228-35, 2012.
Article in English | MEDLINE | ID: mdl-22712420

ABSTRACT

Terrestrial wildlife rabies has been successfully eliminated from Germany predominantly as a result of the distribution of oral rabies vaccine baits. In case that wildlife rabies would re-emerge among its known reservoir species in Germany, swift action based on previous experiences could spatially and temporally limit and subsequently control such an outbreak. However, if rabies emerged in the raccoon population in Germany (Procyon lotor), there are no tools or local experience available to cope with this situation. This is especially worrisome for urban areas like Kassel (Hesse) due to the extremely high raccoon population density. A rabies outbreak among this potential reservoir host species in these urban settings could have a significant impact on public and animal health.


Subject(s)
Disease Reservoirs , Rabies/epidemiology , Raccoons , Animals , Female , Germany/epidemiology , Male , Rabies/prevention & control , Rabies Vaccines/administration & dosage , Risk Assessment , Vaccination
10.
N Engl J Med ; 366(1): 44-53, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22216841

ABSTRACT

BACKGROUND: Chemotherapy for advanced colorectal cancer leads to improved survival; however, predictors of response to systemic treatment are not available. Genomic and epigenetic alterations of the gene encoding transcription factor AP-2 epsilon (TFAP2E) are common in human cancers. The gene encoding dickkopf homolog 4 protein (DKK4) is a potential downstream target of TFAP2E and has been implicated in chemotherapy resistance. We aimed to further evaluate the role of TFAP2E and DKK4 as predictors of the response of colorectal cancer to chemotherapy. METHODS: We analyzed the expression, methylation, and function of TFAP2E in colorectal-cancer cell lines in vitro and in patients with colorectal cancer. We examined an initial cohort of 74 patients, followed by four cohorts of patients (total, 220) undergoing chemotherapy or chemoradiation. RESULTS: TFAP2E was hypermethylated in 38 of 74 patients (51%) in the initial cohort. Hypermethylation was associated with decreased expression of TFAP2E in primary and metastatic colorectal-cancer specimens and cell lines. Colorectal-cancer cell lines overexpressing DKK4 showed increased chemoresistance to fluorouracil but not irinotecan or oxaliplatin. In the four other patient cohorts, TFAP2E hypermethylation was significantly associated with nonresponse to chemotherapy (P<0.001). Conversely, the probability of response among patients with hypomethylation was approximately six times that in the entire population (overall estimated risk ratio, 5.74; 95% confidence interval, 3.36 to 9.79). Epigenetic alterations of TFAP2E were independent of mutations in key regulatory cancer genes, microsatellite instability, and other genes that affect fluorouracil metabolism. CONCLUSIONS: TFAP2E hypermethylation is associated with clinical nonresponsiveness to chemotherapy in colorectal cancer. Functional assays confirm that TFAP2E-dependent resistance is mediated through DKK4. In patients who have colorectal cancer with TFAP2E hypermethylation, targeting of DKK4 may be an option to overcome TFAP2E-mediated drug resistance. (Funded by Deutsche Forschungsgemeinschaft and others.).


Subject(s)
Colorectal Neoplasms/drug therapy , DNA Methylation , Drug Resistance, Neoplasm/genetics , Intercellular Signaling Peptides and Proteins/genetics , Transcription Factor AP-2/genetics , Aged , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Chemoradiotherapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , DNA/analysis , Epigenesis, Genetic , Female , Gene Expression , Gene Expression Regulation, Neoplastic , Humans , Male , Microsatellite Instability , Middle Aged , Mutation , Transcription Factor AP-2/metabolism
11.
Mol Cell Proteomics ; 8(9): 2159-69, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19497847

ABSTRACT

Aromatic compounds comprise a large class of natural and man-made compounds, many of which are of considerable concern for the environment and human health. In aromatic compound-degrading anaerobic bacteria the central intermediate of aromatic catabolism, benzoyl coenzyme A, is attacked by dearomatizing benzoyl-CoA reductases (BCRs). An ATP-dependent BCR has been characterized in facultative anaerobes. In contrast, a previous analysis of the soluble proteome from the obligately anaerobic model organism Geobacter metallireducens identified genes putatively coding for a completely different dearomatizing BCR. The corresponding BamBCDEFGHI complex is predicted to comprise soluble molybdenum or tungsten, selenocysteine, and FeS cluster-containing components. To elucidate key processes involved in the degradation of aromatic compounds in obligately anaerobic bacteria, differential membrane protein abundance levels from G. metallireducens grown on benzoate and acetate were determined by the MS-based spectral counting approach. A total of 931 proteins were identified by combining one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis with liquid chromatography-tandem mass spectrometry. Several membrane-associated proteins involved in the degradation of aromatic compounds were newly identified including proteins with similarities to modules of NiFe/heme b-containing and energy-converting hydrogenases, cytochrome bd oxidases, dissimilatory nitrate reductases, and a tungstate ATP-binding cassette transporter system. The transcriptional regulation of differentially expressed genes was analyzed by quantitative reverse transcription-PCR; in addition benzoate-induced in vitro activities of hydrogenase and nitrate reductase were determined. The results obtained provide novel insights into the poorly understood degradation of aromatic compounds in obligately anaerobic bacteria.


Subject(s)
Bacterial Proteins/analysis , Geobacter/metabolism , Hydrocarbons, Aromatic/metabolism , Membrane Proteins/analysis , Proteome/analysis , Acetates/pharmacology , Benzoates/pharmacology , Biodegradation, Environmental/drug effects , Energy Metabolism/drug effects , Geobacter/genetics , Hydrogenase/metabolism , Multigene Family , Nitrate Reductase/metabolism , Solubility/drug effects
12.
Mol Biol Evol ; 26(9): 1975-91, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19491402

ABSTRACT

Vault RNAs (vtRNAs) are small, about 100 nt long, polymerase III transcripts contained in the vault particles of eukaryotic cells. Presumably due to their enigmatic function, they have received little attention compared with most other noncoding RNA (ncRNA) families. Their poor sequence conservation makes homology search a complex and tedious task even within vertebrates. Here we report on a systematic and comprehensive analysis of this rapidly evolving class of ncRNAs in deuterostomes, providing a comprehensive collection of computationally predicted vtRNA genes. We find that all previously described vtRNAs are located at a conserved genomic locus linked to the protocadherin gene cluster, an association that is conserved throughout gnathostomes. Lineage-specific expansions to small vtRNA gene clusters are frequently observed in this region. A second vtRNA locus is syntenically conserved across eutherian mammals. The vtRNAs at the two eutherian loci exhibit substantial differences in their promoter structures, explaining their differential expression patterns in several human cancer cell lines. In teleosts, expression of several paralogous vtRNA genes, most but not all located at the syntenically conserved protocadherin locus, was verified by reverse transcriptase-polymerase chain reaction.


Subject(s)
Evolution, Molecular , RNA/genetics , Vault Ribonucleoprotein Particles/genetics , Animals , Base Sequence , Cell Line, Tumor , Conserved Sequence , Gene Expression Regulation , Humans , Molecular Sequence Data , Nucleic Acid Conformation , RNA/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Alignment , Sequence Analysis, RNA , Sequence Homology, Nucleic Acid , Vault Ribonucleoprotein Particles/metabolism
13.
Biochem J ; 420(1): 123-32, 2009 Apr 28.
Article in English | MEDLINE | ID: mdl-19203349

ABSTRACT

SRC (steroid receptor co-activator)-1 has been reported to interact with and to be an essential co-activator for several members of the STAT (signal transducer and activator of transcription) family, including STAT3, the major signal transducer of IL (interleukin)-6. We addressed the question of whether SRC-1 is crucial for IL-6- and STAT3-mediated physiological responses such as myeloma cell survival and acute-phase protein induction. In fact, silencing of SRC-1 by RNA interference rapidly induced apoptosis in IL-6-dependent INA-6 human myeloma cells, comparable with what was observed upon silencing of STAT3. Using chromatin immunoprecipitation at STAT3 target regions of various genes, however, we observed constitutive binding of SRC-1 that decreased when INA-6 cells were treated with IL-6. The same held true for STAT3 target genes analysed in HepG2 human hepatocellular carcinoma cells. SRC-1-knockdown studies demonstrated that STAT3-controlled promoters require neither SRC-1 nor the other p160 family members SRC-2 or SRC-3 in HepG2 cells. Furthermore, microarray expression profiling demonstrated that the responsiveness of IL-6 target genes is not affected by SRC-1 silencing. In contrast, co-activators of the CBP [CREB (cAMP-response element-binding protein)-binding protein]/p300 family proved functionally important for the transactivation potential of STAT3 and bound inducibly to STAT3 target regions. This recruitment did not depend on the presence of SRC-1. Altogether, this suggests that functional impairment of STAT3 is not involved in the induction of myeloma cell apoptosis by SRC-1 silencing. We therefore conclude that STAT3 transactivates its target genes by the recruitment of CBP/p300 co-activators and that this process generally does not require the contribution of SRC-1.


Subject(s)
E1A-Associated p300 Protein/metabolism , Histone Acetyltransferases/physiology , STAT3 Transcription Factor/physiology , Transcription Factors/physiology , Transcription, Genetic , Cell Line, Tumor , Gene Silencing , Histone Acetyltransferases/genetics , Humans , Interleukin-6/pharmacology , Nuclear Receptor Coactivator 1 , STAT3 Transcription Factor/genetics , Transcription Factors/genetics , Transcriptional Activation
14.
Biol Lett ; 4(5): 476-8, 2008 Oct 23.
Article in English | MEDLINE | ID: mdl-18593671

ABSTRACT

In many arthropods, such as bushcrickets, males donate protein-rich nuptial gifts-so-called spermatophores-to females, which females ingest while the sperm enter the female's reproductive tract. Previously, it was shown that females route spermatophore nutrients over the course of hours and days to egg production or body synthesis. We investigated whether female bushcrickets fuel their metabolism with spermatophores immediately after consumption. We fed two male groups diets that were either enriched or depleted in 13C, and then tracked the isotopic changes in exhaled breath in female bushcrickets after spermatophore consumption. Within 3 hours, the stable carbon isotope ratio (delta13C) of female breath converged on the ratio of the male donor of the nuptial gift. This supports the idea that females quickly routed nutrients to metabolism, receiving immediate benefits from spermatophore feeding.


Subject(s)
Orthoptera/metabolism , Sexual Behavior, Animal , Animals , Breath Tests , Carbon Isotopes/metabolism , Female , Male
15.
Blood ; 110(4): 1330-3, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17496199

ABSTRACT

Signal transducer and activator of transcription 3 (Stat3) is implicated in the pathogenesis of many malignancies and essential for IL-6-dependent survival and growth of multiple myeloma cells. Here, we demonstrate that the gene encoding oncogenic microRNA-21 (miR-21) is controlled by an upstream enhancer containing 2 Stat3 binding sites strictly conserved since the first observed evolutionary appearance of miR-21 and Stat3. MiR-21 induction by IL-6 was strictly Stat3 dependent. Ectopically raising miR-21 expression in myeloma cells in the absence of IL-6 significantly reduced their apoptosis levels. These data provide strong evidence that miR-21 induction contributes to the oncogenic potential of Stat3.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Interleukin-6/pharmacology , MicroRNAs/physiology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , STAT3 Transcription Factor/metabolism , Apoptosis , Cell Line, Tumor , Chromatin Immunoprecipitation , Humans , Multiple Myeloma/drug therapy , Transcription, Genetic
16.
Blood ; 103(1): 242-51, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-12969979

ABSTRACT

Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6-dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overexpression studies demonstrated, however, that IL-6 does not exert its survival effect primarily through this pathway. The IL-6 signal transduction pathways required for survival and the target genes controlled by them were analyzed by using mutated receptor chimeras. The activation of signal transducer and activator of transcription 3 (Stat3) turned out to be obligatory for the survival of INA-6 cells. The same held true for survival and growth of XG-1 myeloma cells. Gene expression profiling of INA-6 cells by using oligonucleotide microarrays revealed many novel IL-6 target genes, among them several genes coding for transcriptional regulators involved in B-lymphocyte differentiation as well as for growth factors and receptors potentially implicated in autocrine or paracrine growth control. Regulation of most IL-6 target genes required the activation of Stat3, underscoring its central role for IL-6 signal transduction. Taken together, our data provide evidence for the existence of an as yet unknown Stat3-dependent survival pathway in myeloma cells.


Subject(s)
DNA-Binding Proteins/metabolism , Genes, bcl-2 , Interleukin-6/metabolism , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Trans-Activators/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis/drug effects , Base Sequence , Cell Division/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cytokine Receptor gp130 , DNA, Neoplasm/genetics , Gene Expression Profiling , Humans , Interleukin-6/pharmacology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Multiple Myeloma/drug therapy , Mutation , Oligonucleotide Array Sequence Analysis , Receptors, Erythropoietin/genetics , Recombinant Proteins/pharmacology , STAT3 Transcription Factor , Signal Transduction
17.
Biochem J ; 377(Pt 2): 289-97, 2004 Jan 15.
Article in English | MEDLINE | ID: mdl-12974672

ABSTRACT

Signal transducer and activator of transcription 3 (Stat3) dimerization is commonly thought to be triggered by its tyrosine phosphorylation in response to interleukin-6 (IL-6) or other cytokines. Accumulating evidence from in vitro studies, however, suggests that cytoplasmic Stat3 may be associated with high-molecular-mass protein complexes and/or dimerize prior to its activation. To directly study Stat3 dimerization and subcellular localization upon cytokine stimulation, we used live-cell fluorescence spectroscopy and imaging microscopy combined with fluorescence resonance energy transfer (FRET). Stat3 fusion proteins with spectral variants of green fluorescent protein (GFP), cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) were constructed and expressed in human hepatoma cells (HepG2) and human embryonic kidney cells (HEK-293). Like wild-type Stat3, the fusion proteins redistributed from a preferentially cytoplasmic to nuclear localization upon IL-6 stimulation and supported IL-6-dependent target gene expression. FRET studies in cells co-expressing Stat3-CFP and Stat3-YFP demonstrated that Stat3 dimers exist in the absence of tyrosine phosphorylation. IL-6 induced a 2-fold increase of this basal FRET signal, indicating that tyrosine phosphorylation either increases the dimer/monomer ratio of Stat3 or induces a conformational change of the dimer yielding a higher FRET efficiency. Studies using a mutated Stat3 with a non-functional src-homology 2 (SH2) domain showed that the SH2 domain is essential for dimer formation of phosphorylated as well as non-phosphorylated Stat3. Furthermore, our data show that visualization of normalized FRET signals allow insights into the spatiotemporal dynamics of Stat3 signal transduction.


Subject(s)
DNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Active Transport, Cell Nucleus , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Line , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dimerization , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins , Humans , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Microscopy, Fluorescence , Models, Molecular , Recombinant Fusion Proteins/chemistry , STAT3 Transcription Factor , Trans-Activators/chemistry , Trans-Activators/genetics
18.
J Biol Chem ; 278(12): 10562-71, 2003 Mar 21.
Article in English | MEDLINE | ID: mdl-12524448

ABSTRACT

Up to now neuropeptide Y (NPY) receptors, which belong to the large family of G-protein-coupled receptors and are involved in a broad range of physiological processes, are believed to act as monomers. Studies with the Y(1)-receptor antagonist and Y(4)-receptor agonist GR231118, which binds with a 250-fold higher affinity than its monomer, led to the first speculation that NPY receptors can form homodimers. In the present work we used the fluorescence resonance energy transfer (FRET) to study homodimerization of the hY(1)-, hY(2)-, and hY(5)-receptors in living cells. For this purpose, we generated fusion proteins of NPY receptors and green fluorescent protein or spectral variants of green fluorescent protein (cyan, yellow, and red fluorescent protein), which can be used as FRET pairs. Two different FRET techniques, fluorescence microscopy and fluorescence spectroscopy, were applied. Both techniques clearly showed that the hY(1)-, hY(2)-, and hY(5)-NPY receptor subtypes are able to form homodimers. By using transiently transfected cells, as well as a stable cell line expressing the hY(2)-GFP fusion protein, we could demonstrate that the Y-GFP fusion proteins are still functional and that dimerization varies from 26 to 44% dependent on the receptor. However, homodimerization is influenced neither by NPY nor by Galpha protein binding.


Subject(s)
Receptors, Neuropeptide Y/chemistry , Animals , Cells, Cultured , Cricetinae , Dimerization , Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence , Neuropeptide Y/pharmacology , Receptors, Neuropeptide Y/analysis , Recombinant Fusion Proteins/chemistry , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...