Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
RSC Adv ; 10(60): 36467-36477, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517956

ABSTRACT

Radiation-grafted anion-exchange membranes (RG-AEM) in alkaline membrane fuel cells (AEMFC) exhibit promising performances (low in situ resistances, high power outputs and reasonably high alkali stabilities). Much research is focused on developing AEMs with enhanced chemical stabilities in the OH--forms at temperatures >60 °C. This study contributes towards this effort by providing a comparison of three different ex situ methods of screening alkali stabilities (where different laboratories conducted experiments on exactly the same batches of RG-AEM). Vinylbenzyl chloride monomer was radiation-grafted onto 25 µm thick low-density polyethylene (LDPE) precursor film in a single batch. This batch of grafted membrane was then split into three sub-batches, which were converted into RG-AEMs via amination with either: trimethylamine (TMA), N-methylpyrrolidine (MPY), or N-methylpiperidine (MPIP). Samples of each RG-AEM (l-AEM-TMA, l-AEM-MPY, and l-AEM-MPIP) were then distributed between the three collaborating institutes for evaluation using each institutes' test protocols. Out of the three head-group chemistries, the l-AEM-TMA generally exhibits the best balance of conductivity and ex situ alkali degradation, especially in lower humidity environments. The l-AEM-TMA also exhibited interestingly high Cl- ion conductivities (ca. 100 mS cm-1) when heated to 80 °C in a relative humidity RH = 95% atmosphere, a measurement frequently overlooked in favour of determining conductivities of RG-AEMs submerged in water (conductivities of submerged RG-AEMs can be suppressed due to excessive water contents and swelling).

2.
Phys Chem Chem Phys ; 20(41): 26660-26674, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30320331

ABSTRACT

Nafion is the most common material used as a proton exchange membrane in fuel cells. Yet, details of the transport pathways for protons and water in the inner membrane are still under debate. Overhauser Dynamic Nuclear Polarization (ODNP) has proven to be a useful tool for probing hydration dynamics and interactions within 5-8 Å of protein and soft material surfaces. Recently it was suggested that ODNP can also be applied to analyze surface water dynamics along Nafion's inner membrane. Here we interrogate the viability of this method for Nafion by carrying out a series of measurements relying on 1H nuclear magnetic resonance (NMR) relaxometry and diffusometry experiments with and without ODNP hyperpolarization, accompanied by other complementary characterization methods including small angle X-ray scattering (SAXS), thermal gravimetric analysis (TGA) of hydration, and proton conductivity by AC impedance spectroscopy. Our comprehensive study shows that commonly used paramagnetic spin probes-here, stable nitroxide radicals-for ODNP, as well as their diamagnetic analogues, reduce the inner membrane surface hydrophilicity, depending on the location and concentration of the spin probe. This heavily reduces the hydration of Nafion, hence increases the tortuosity of the inner membrane morphology and/or increases the activiation barrier for water transport, and consequently impedes water diffusion, transport, and proton conductivity.

3.
Phys Chem Chem Phys ; 19(1): 601-612, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27918027

ABSTRACT

Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1H- and 31P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

4.
Phys Chem Chem Phys ; 19(1): 587-600, 2016 Dec 21.
Article in English | MEDLINE | ID: mdl-27918028

ABSTRACT

Ionic charge carrier formation and mobility, including the underlying conduction mechanisms, are investigated for phosphoric acid at water contents relevant for the acid's application as electrolyte in fuel cells. The high conductivity contribution from structural diffusion involving intermolecular proton transfer (∼97%) in neat phosphoric acid (H3PO4) passes through a maximum at this composition. Hydrogen bond network frustration (imbalance of the number of proton donors and acceptors), which is closely related to the appearance of structural diffusion, decreases with both elimination and addition of water. Structural diffusion is virtually disappearing for H3PO4·2H2O, yet, the overall conductivity increases with increasing water content and reaches a maximum at a composition of H3PO4·5H2O. The conductivity increase is a consequence of the progressive de-coupling of the diffusion of aqueous species from that of phosphate species and the strongly enhanced acidity of phosphoric acid at low water contents. High concentrations of protonated aqueous species with high diffusivity then lead to high conductivity contributions from vehicular transport. The increased water transport associated with the change in transport mechanism is suggested to have severe implications for fuel cell applications. At low water contents the conductivity contribution of structural diffusion is also reduced, but it is accompanied by conductivity contributions from a high concentration of multiply charged condensation products (e.g. H2P2O72-, H3P3O102- and H2P3O103-). The results underline the singularity of structure diffusion in neat phosphoric acid (H3PO4) and its sensitivity against any perturbation.

5.
J Phys Chem B ; 119(52): 15866-75, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26633234

ABSTRACT

Diphosphoric acid (H4P2O7) is the first condensation product of phosphoric acid (H3PO4), the compound with the highest intrinsic proton conductivity in the liquid state. It exists at higher temperature (T > 200 °C) and lower relative humidity (RH ≈ 0.01%) and shows significant ionic conductivity under these conditions. In this work, ab initio molecular dynamics simulations of a pure H4P2O7 model system and NMR spectroscopy on nominal H4P2O7 (which contains significant amounts of ortho- and triphosphoric acid in thermodynamic equilibrium) were performed to reveal the nature and underlying mechanisms of the ionic conductivity. The central oxygen of the molecule is found to be excluded from any hydrogen bonding, which has two interesting consequences: (i) compared to H3PO4, the acidity of H4P2O7 is severely increased, and (ii) the condensation reaction only leads to a minor decrease in hydrogen bond network frustration, which is thought to be one of the features enabling high proton conductivity. A topological analysis of diphosphoric acid's hydrogen bond network shows remarkable similarities to that of phosphonic acid (H3PO3). The hydrogen bonding facilitates protonic polarization fluctuations (Zundel polarization) extending over several molecules (Grotthuss chains), the other important ingredient for efficient structural diffusion of protons. At T = 160 °C, this is estimated to make a conductivity contribution of about 0.1 S/cm, which accounts for half of the total ionic conductivity (σ ≈ 0.2 S/cm). The other half is suggested to result from diffusion of charged phosphate species (vehicle mechanism) that are present in high concentration, resembling conduction in ionic liquids.

6.
Angew Chem Int Ed Engl ; 51(42): 10454-6; author reply 10457-8, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22893584

ABSTRACT

Parasitic current seems to be the cause for the "highest proton conductivity" of a material reported to date. Kreuer and Wohlfarth verify this hypothesis by measuring the conductivity of the same materials after preparing them in a different way. They further explain the limits of proton conductivity and comment on the problems of determining the conductivity of small objects (e.g., whiskers, see picture).

7.
Nat Chem ; 4(6): 461-6, 2012 Apr 22.
Article in English | MEDLINE | ID: mdl-22614380

ABSTRACT

Neat liquid phosphoric acid (H(3)PO(4)) has the highest intrinsic proton conductivity of any known substance and is a useful model for understanding proton transport in other phosphate-based systems in biology and clean energy technologies. Here, we present an ab initio molecular dynamics study that reveals, for the first time, the microscopic mechanism of this high proton conductivity. Anomalously fast proton transport in hydrogen-bonded systems involves a structural diffusion mechanism in which intramolecular proton transfer is driven by specific hydrogen bond rearrangements in the surrounding environment. Aqueous media transport excess charge defects through local hydrogen bond rearrangements that drive individual proton transfer reactions. In contrast, strong, polarizable hydrogen bonds in phosphoric acid produce coupled proton motion and a pronounced protic dielectric response of the medium, leading to the formation of extended, polarized hydrogen-bonded chains. The interplay between these chains and a frustrated hydrogen-bond network gives rise to the high proton conductivity.


Subject(s)
Phosphoric Acids/chemistry , Protons , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation
9.
J Phys Chem A ; 113(32): 9193-201, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19569665

ABSTRACT

Development of superior electrolytes for fuel cells that enable operation at temperatures above 120 degrees C without external humidification will benefit from molecular-level understanding of proton conduction mechanisms in neat acid systems possessing little or no water. The energetics and collective molecular effects associated with proton transfer in clusters consisting of two to six phosphoric acid (H3PO4) molecules are examined with electronic structure calculations. Global minimum-energy structures are determined at the B3LYP/6-311G** level for each cluster from many chemically rational initial configurations. Binding energies are computed and found to correlate with the number and type of hydrogen bonds present in the cluster and show an increase in the strength of the interactions up to and including (H3PO4)6. This suggests that more than six molecules may be required to fully encompass the binding in bulk phosphoric acid. Potential energy profiles and associated energetic penalties for proton transfer are determined at the B3LYP/6-31G** level under four different constraints on the positions of surrounding atoms. The endothermicities decrease with increasing cluster size, suggesting that several molecules facilitate proton transfer. Calculation of partial atomic charges with the CHELPG scheme both prior to and following proton transfer indicates a higher degree of charge delocalization in the larger clusters and thereby a smaller energetic penalty.


Subject(s)
Phosphoric Acids/chemistry , Protons , Quantum Theory , Dimerization , Electrons , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Polymers/chemistry
10.
Phys Chem Chem Phys ; 8(39): 4530-42, 2006 Oct 21.
Article in English | MEDLINE | ID: mdl-17047750

ABSTRACT

The possible use of sulfonic acid, phosphonic acid, or imidazole as the protogenic group in polymer electrolyte membranes for fuel cells operating at intermediate temperature (T>100 degrees C) and very low humidity conditions is examined by comparing specific molecular properties obtained with first principles based electronic structure calculations. Potential energy profiles determined at the B3LYP/6-311G** level for rotation of imidazole, phosphonic acid and sulfonic acid functional groups on saturated heptyl chains revealed that the torsional barriers are 3.9, 10.0, and 15.9 kJ mol-1, respectively; indicating that the imidazole is clearly the most labile when tethered to an alkyl chain. Minimum energy conformations (B3LYP/6-311G**) of methyl dimers of each of the acids indicated that the binding of the pairs of the acids is greatest in the phosphonic acids and lowest for the imidazoles. Comparison of the ZPE corrected total energies of the methyl acid dimers with corresponding pairs consisting of the conjugate acid and conjugate base revealed that the energy penalty in transferring the proton (from acid to acid) was greatest for imidazole (120.1 kJ mol-1) and least for the phosphonic acid (37.2 kJ mol-1). This result is in agreement with experimentally measured proton conductivities of acid-functionalized heptyl compounds under dry conditions and further underpins the observation that phosphonic acid possesses the best amphoteric character critical in achieving proton conductivity when no solvent (i.e. water) is present. Finally, BSSE corrected binding energies were computed for the methyl acids with a single water molecule and indicated that while the magnitude of the interaction of the sulfonic and phosphonic acids with water are similar (47.3 and 44.4 kJ mol-1, respectively), the binding is much weaker to the imidazole (28.8 kJ mol-1). This result suggests that the oxo-acids will probably retain water better under very low humidity conditions and that the dynamics of the hydrogen bonding of the first hydration water molecules will be more constrained with -SO3H and -PO3H2 than imidazole.

SELECTION OF CITATIONS
SEARCH DETAIL
...