Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(8): 3514-3524, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38445014

ABSTRACT

A fundamental understanding of proton transport through graphene nanopores, defects, and vacancies is essential for advancing two-dimensional proton exchange membranes (PEMs). This study employs ReaxFF molecular dynamics, metadynamics, and density functional theory to investigate the enhanced proton transport through a graphene nanopore. Covalently functionalizing the nanopore with a benzenesulfonic group yields consistent improvements in proton permeability, with a lower activation barrier (≈0.15 eV) and increased proton selectivity over sodium cations. The benzenesulfonic functionality acts as a dynamic proton shuttle, establishing a favorable hydrogen-bonding network and an efficient proton transport channel. The model reveals an optimal balance between proton permeability and selectivity, which is essential for effective proton exchange membranes. Notably, the benzenesulfonic-functionalized graphene nanopore system achieves a theoretically estimated proton diffusion coefficient comparable to or higher than the current state-of-the-art PEM, Nafion. Ergo, the benzenesulfonic functionalization of graphene nanopores, firmly holds promise for future graphene-based membrane development in energy conversion devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...