Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Clin Inform ; 15(3): 469-478, 2024 May.
Article in English | MEDLINE | ID: mdl-38897231

ABSTRACT

BACKGROUND: In times of omnipresent digitization and big data, telemedicine and electronic case files (ECFs) are gaining ground for networking between players in the health care sector. In the context of the SALUS study, this approach is applied in practice in the form of electronic platforms to display and process disease-relevant data of glaucoma patients. OBJECTIVES: The SALUS ECF is designed and implemented to support data acquisition and presentation, monitoring, and outcome control for patients suffering from glaucoma in a clinical setting. Its main aim is to provide a means for out- and inpatient exchange of information between various stakeholders with an intuitive user interface in ophthalmologic care. Instrument data, anamnestic data, and diagnostic assessments need to be accessible and historic data stored for patient monitoring. Quality control of the data is ensured by a reading center. METHODS: Based on an intensive requirement analysis, we implemented the ECF as a web-based application in React with a Datomic back-end exposing REST and GraphQL APIs for data access and import. A flexible role management was developed, which addresses the various tasks of multiple stakeholders in the SALUS study. Data security is ensured by a comprehensive encryption concept. We evaluated the usability and efficiency of the ECF by measuring the durations medical doctors need to enter and work with the data. RESULTS: The evaluation showed that the ECF is time-saving in comparison to paper-based assessments and offers supportive monitoring and outcome control for numerical and imaging-related data. By allowing patients and physicians to access the digital ECF, data connectivity as well as patient autonomy were enhanced. CONCLUSION: ECFs have a great potential to efficiently support all patients and stakeholders involved in the care of glaucoma patients. They benefit from the efficient management and view of the data tailored to their specific role.


Subject(s)
Glaucoma , Glaucoma/diagnosis , Humans , Tonometry, Ocular , Self Care , Telemedicine , Electronic Health Records
2.
J Am Soc Echocardiogr ; 18(4): 362-6, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15846165

ABSTRACT

Two-dimensional (2D) echocardiography is a user-dependent technique that poses some inherent problems to the beginner. The first problem for beginners is spatial orientation, especially the orientation of the scan plane in reference to the 3-dimensional (3D) geometry of the heart. The second problem for beginners is steering of the ultrasound probe. We have designed a simulator to teach these skills. On a computer screen a side-by-side presentation of a 3D virtual reality scene on the right side and a 2D echocardiographic view on the left side is given. The virtual scene consists of a 3D heart and an ultrasound probe with scan plane. The 2D echocardiographic image is calculated from 3D echocardiographic data sets that are registered with the heart model to achieve spatial and temporal congruency. The displayed 2D echocardiographic image is defined and controlled by the orientation of the virtual scan plane. To teach hand-eye coordination we equipped a dummy transducer with a 3D tracking system and placed it on a dummy torso. We have evaluated the usability of the simulator in an introductory course for final-year medical students. The simulator was graded realistic and easy to use. According to a subjective self-assessment by a standardized questionnaire the aforementioned skills were imparted effectively.


Subject(s)
Cardiology/education , Computer-Assisted Instruction , Echocardiography , Education, Medical, Undergraduate/methods , Adult , Female , Humans , Male , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...