Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Arch Psychiatry Clin Neurosci ; 271(7): 1245-1253, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34218305

ABSTRACT

INTRODUCTION: The effect of concomitant medication on repetitive transcranial magnetic stimulation (rTMS) outcomes in depression remains understudied. Recent analyses show attenuation of rTMS effects by antipsychotic medication and benzodiazepines, but data on the effects of antiepileptic drugs and lithium used as mood stabilizers or augmenting agents are sparse despite clinical relevance. Preclinical electrophysiological studies suggest relevant impact of the medication on treatment, but this might not translate into clinical practice. We aimed to investigate the role of lithium (Li), lamotrigine (LTG) and valproic acid (VPA) by analyzing rTMS treatment outcomes in depressed patients. METHODS: 299 patients with uni- and bipolar depression treated with rTMS were selected for analysis in respect to intake of lithium, lamotrigine and valproic acid. The majority (n = 251) were treated with high-frequency (10-20 Hz) rTMS of the lDLPFC for an average of 17 treatment sessions with a figure-of-8 coil with a MagVenture system aiming for 110% resting motor threshold, and smaller groups of patients were being treated with other protocols including intermittent theta-burst stimulation and bilateral prefrontal and medial prefrontal protocols. For group comparisons, we used analysis of variance with the between-subjects factor group or Chi-Square Test of Independence depending on the scales of measurement. For post-hoc tests, we used least significant difference (LSD). For differences in treatment effects between groups, we used an ANOVA with the between-subjects factor group (groups: no mood stabilizer, Li, LTG, VPA, Li + LTG) the within-subjects factor treatment (pre vs. post treatment with rTMS) and also Chi-Square Tests of independence for response and remission. RESULTS: Overall, patients showed an amelioration of symptoms with no significant differences for the main effect of group and for the interaction effect treatment by group. Based on direct comparisons between the single groups taking mood stabilizers against the group taking no mood stabilizers, we see a superior effect of lamotrigine, valproic acid and combination of lithium and lamotrigine for the response and remission rates. Motor threshold was significantly and markedly higher for patients taking valproic acid. CONCLUSION: Being treated with lithium, lamotrigine and valproic acid had no relevant influence on rTMS treatment outcome. The results suggest there is no reason for clinicians to withhold or withdraw these types of medication from patients who are about to undergo a course of rTMS. Prospective controlled work on the subject is encouraged.


Subject(s)
Depression , Transcranial Magnetic Stimulation , Anticonvulsants/therapeutic use , Antidepressive Agents/therapeutic use , Antipsychotic Agents/therapeutic use , Depression/drug therapy , Depression/therapy , Humans , Lamotrigine/therapeutic use , Lithium/therapeutic use , Treatment Outcome , Valproic Acid/therapeutic use
2.
Eur Arch Psychiatry Clin Neurosci ; 271(1): 61-67, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32648109

ABSTRACT

BACKGROUND/OBJECTIVES: Repetitive transcranial magnetic stimulation (rTMS) has been established as an effective therapeutic intervention for the treatment of depression. Preliminary data suggest that the efficacy of rTMS is reduced in patients taking benzodiazepines (BZD). Here, we use real-world data from a large sample to investigate the influence of lorazepam on the effectiveness of rTMS. METHODS: From a retrospective cohort of clinically depressed patients that were treated with rTMS, we compared 176 patients not taking any BZD with 73 patients taking lorazepam with respect to changes in the Hamilton Depression Rating Scale (HRDS). RESULTS: Both groups improved during rTMS according to HRDS scores, but the amelioration of symptoms was significantly less pronounced in patients taking lorazepam (18% vs. 38% responders in the non-lorazepam group). We could not see any association of intake regimen of lorazepam with response in rTMS. CONCLUSION: Our observational study suggests that intake of lorazepam impedes the response to rTMS. The impact of lorazepam and other BZD on rTMS should receive more attention and be further investigated in prospective, hypothesis-based treatment studies to determine causal relationships between medication treatments and outcome. This could lead to specific recommendations for pharmacological treatment for depressed patients undergoing rTMS.


Subject(s)
Depression/therapy , Lorazepam/administration & dosage , Lorazepam/therapeutic use , Transcranial Magnetic Stimulation , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/therapy , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome
3.
Mol Psychiatry ; 22(6): 857-864, 2017 06.
Article in English | MEDLINE | ID: mdl-27725655

ABSTRACT

Impaired neural plasticity may be a core pathophysiological process underlying the symptomatology of schizophrenia. Plasticity-enhancing interventions, including repetitive transcranial magnetic stimulation (rTMS), may improve difficult-to-treat symptoms; however, efficacy in large clinical trials appears limited. The high variability of rTMS-related treatment response may be related to a comparably large variation in the ability to generate plastic neural changes. The aim of the present study was to determine whether negative symptom improvement in schizophrenia patients receiving rTMS to the left dorsolateral prefrontal cortex (DLPFC) was related to rTMS-related brain volume changes. A total of 73 schizophrenia patients with predominant negative symptoms were randomized to an active (n=34) or sham (n=39) 10-Hz rTMS intervention applied 5 days per week for 3 weeks to the left DLPFC. Local brain volume changes measured by deformation-based morphometry were correlated with changes in negative symptom severity using a repeated-measures analysis of covariance design. Volume gains in the left hippocampal, parahippocampal and precuneal cortices predicted negative symptom improvement in the active rTMS group (all r⩽-0.441, all P⩽0.009), but not the sham rTMS group (all r⩽0.211, all P⩾0.198). Further analyses comparing negative symptom responders (⩾20% improvement) and non-responders supported the primary analysis, again only in the active rTMS group (F(9, 207)=2.72, P=0.005, partial η 2=0.106). Heterogeneity in clinical response of negative symptoms in schizophrenia to prefrontal high-frequency rTMS may be related to variability in capacity for structural plasticity, particularly in the left hippocampal region and the precuneus.


Subject(s)
Prefrontal Cortex/physiopathology , Schizophrenia/therapy , Transcranial Magnetic Stimulation/methods , Adult , Brain/physiopathology , Double-Blind Method , Female , Humans , Male , Neuronal Plasticity/physiology , Prefrontal Cortex/diagnostic imaging , Psychiatric Status Rating Scales , Schizophrenia/complications , Transcranial Magnetic Stimulation/psychology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...