Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 29(40): 12593-600, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24028496

ABSTRACT

Herein, we present a strategy for the glycoconjugation of nanoparticles (NPs), with a special focus on fluorescent quantum dots (QDs), recently described by us as "preassembly" approach. Therein, prior to the encapsulation of diverse nanoparticles by an amphiphilic poly(isoprene)-b-poly(ethylene glycol) diblock copolymer (PI-b-PEG), the terminal PEG appendage was modified by covalently attaching a carbohydrate moiety using Huisgen-type click-chemistry. Successful functionalization was proven by NMR spectroscopy. The terminally glycoconjugated polymers were subsequently used for the encapsulation of QDs in a phase transfer process, which fully preserved fluorescence properties. Binding of these nanoconstructs to the lectin Concanavalin A (Con A) was studied via surface plasmon resonance (SPR). Depending on the carbohydrate moiety, namely, D-manno-heptulose, D-glucose, D-galactose, 2-deoxy-2-{[methylamino)carbonyl]amino}-D-glucopyranose ("des(nitroso)-streptozotocin"), or D-maltose, the glycoconjugated QDs showed enhanced affinity constants due to multivalent binding effects. None of the constructs showed toxicity from 0.001 to 1 µM (particle concentration) using standard WST and LDH assays on A549 cells.


Subject(s)
Polymers/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Click Chemistry , Concanavalin A/chemistry , Humans , Magnetic Resonance Spectroscopy , Nanoparticles/chemistry , Surface Plasmon Resonance
2.
ACS Nano ; 4(7): 4283-91, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20575504

ABSTRACT

We report a solution-processed, ligand-supported synthesis of 15-20 nm thick Sb(2-x)BixTe3 nanoplatelets. After complete ligand removal by a facile NH3-based etching procedure, the platelets are spark plasma sintered to a p-type nanostructured bulk material with preserved crystal grain sizes. Due to this nanostructure, the total thermal conductivity is reduced by 60% in combination with a reduction in electric conductivity of as low as 20% as compared to the bulk material demonstrating the feasibility of the phonon-glass electron-crystal concept. An enhancement in the dimensionless thermoelectric figure of merit of up to 15% over state-of-the-art bulk materials is achieved, meanwhile, shifting the maximum to significantly higher temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...