Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 24(7): 1186-1197, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35869655

ABSTRACT

The occurrence of hot drought, i.e. low water availability and simultaneous high air temperature, represents a severe threat to ecosystems. Here, we investigated how the 2018 hot drought in Central Europe caused a tipping point in tree and ecosystem functioning in a Scots pine (Pinus sylvestris L.) forest in southwest Germany. Measurements of stress indicators, such as needle water potential, carbon assimilation and volatile organic compound (VOC) emissions, of dominant P. sylvestris trees were deployed to evaluate tree functioning during hot drought. Ecosystem impact and recovery were assessed as ecosystem carbon exchange, normalized difference vegetation index (NDVI) from satellite data and tree mortality data. During summer 2018, needle water potentials of trees dropped to minimum values of -7.5 ± 0.2 MPa, which implied severe hydraulic impairment of P. sylvestris. Likewise, carbon assimilation and VOC emissions strongly declined after mid-July. Decreasing NDVI values from August 2018 onwards were detected, along with severe defoliation in P. sylvestris, impairing ecosystem carbon flux recovery in 2019, shifting the forest into a year-round carbon source. A total of 47% of all monitored trees (n = 368) died by September 2020. NDVI recovered to pre-2018 levels in 2019, likely caused by emerging broadleaved understorey species. The 2018 hot drought had severe negative impacts on P. sylvestris. The co-occurrence of unfavourable site-specific conditions with recurrent severe droughts resulted in accelerated mortality. Thus, the 2018 hot drought pushed the P. sylvestris stand towards its tipping point, with a subsequent vegetation shift to a broadleaf-dominated forest.


Subject(s)
Pinus sylvestris , Volatile Organic Compounds , Droughts , Ecosystem , Forests , Trees , Carbon , Water
2.
Plant Biol (Stuttg) ; 24(6): 967-978, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35661369

ABSTRACT

Many belowground processes, such as soil respiration and soil-atmosphere VOC (volatile organic compounds) exchange, are closely linked to soil microbiological processes. However, little is known about how changes in plant species cover, i.e. after plant invasion, alter these soil processes. In particular, the response of soil VOC emissions to plant invasion is not well understood. We analysed soil VOC emissions and soil respiration of a Mediterranean cork oak (Quercus suber) ecosystem, comparing soil VOC emissions from a non-invaded Q. suber woodland to one invaded by the shrub Cistus ladanifer. Soil VOC emissions were determined under controlled conditions using online proton-transfer time-of-flight mass spectrometry. Net soil VOC emissions were measured by exposing soils with or without litter to different temperature and soil moisture conditions. Soil VOC emissions were sensitive to C. ladanifer invasion. Highest net emission rates were determined for oxygenated VOC (acetaldehyde, acetone, methanol, acetic acid), and high temperatures enhanced total VOC emissions. Invasion affected the relative contribution of various VOC. Methanol and acetaldehyde were emitted exclusively from litter and were associated with the non-invaded sites. In contrast, acetone emissions increased in response to shrub presence. Interestingly, low soil moisture enhanced the effect of shrub invasion on VOC emissions. Our results indicate that shrub invasion substantially influences important belowground processes in cork oak ecosystems, in particular soil VOC emissions. High soil moisture is suggested to diminish the invasion effect through a moisture-induced increase in microbial decomposition rates of soil VOC.


Subject(s)
Quercus , Volatile Organic Compounds , Acetaldehyde , Acetone , Ecosystem , Forests , Methanol , Protons , Soil/chemistry , Volatile Organic Compounds/analysis
3.
Plant Biol (Stuttg) ; 20(6): 951-955, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30047200

ABSTRACT

Rice is the most important staple food for half of the world's population, but also accounts for about 10% of all anthropogenic CH4 emissions. In spite of a wealth of information on the mechanistic basis and the importance of the rice plant in mediating these emissions, the significance of root exudation for CH4 emissions and the processes that determine root exudation are not well understood. Root exudates derive from photosynthate allocated to the root and subjected to root anabolic and catabolic processes. Key processes in roots that determine the extent of root exudation and, hence, CH4 emission from rice agriculture, include (i) deviation of metabolites from root anabolic and catabolic pathways facilitating root exudation, but also (ii) xylem loading and transport of potential root exudates for reallocation to the leaves, and (iii) xylem loading of sucrose in roots for its transport into reproductive organs, both suppressing root exudation. These processes are modulated by plant development and metabolic requirements resulting from different functions of root exudation. In the present report the interplay of root exudation, CH4 emission and yield are discussed.


Subject(s)
Methane/biosynthesis , Oryza/metabolism , Plant Exudates/biosynthesis , Plant Roots/metabolism , Crop Production , Oryza/growth & development , Oryza/physiology , Plant Exudates/analysis , Plant Leaves/metabolism , Plant Roots/physiology
4.
Sci Rep ; 8(1): 6855, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717178

ABSTRACT

Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Time-of-Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m-2 s-1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m-2 s-1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m-2 s-1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the future.


Subject(s)
Atmosphere/chemistry , Cistus/metabolism , Diterpenes, Kaurane , Plant Leaves/metabolism , Volatile Organic Compounds , Circadian Rhythm , Diterpenes, Kaurane/analysis , Diterpenes, Kaurane/metabolism , Ecosystem , Monoterpenes/analysis , Monoterpenes/metabolism , Portugal , Sesquiterpenes/analysis , Sesquiterpenes/metabolism , Temperature , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism
5.
Plant Biol (Stuttg) ; 11 Suppl 1: 4-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19778364

ABSTRACT

Forest ecosystems with low soil nitrogen (N) availability are characterized by direct competition for this growth-limiting resource between several players, i.e. various components of vegetation, such as old-growth trees, natural regeneration and understorey species, mycorrhizal fungi, free-living fungi and bacteria. With the increase in frequency and intensity of extreme climate events predicted in current climate change scenarios, also competition for N between plants and/or soil microorganisms will be affected. In this review, we summarize the present understanding of ecosystem N cycling in N-limited forests and its interaction with extreme climate events, such as heat, drought and flooding. More specifically, the impacts of environmental stresses on microbial release and consumption of bioavailable N, N uptake and competition between plants, as well as plant and microbial uptake are presented. Furthermore, the consequences of drying-wetting cycles on N cycling are discussed. Additionally, we highlight the current methodological difficulties that limit present understanding of N cycling in forest ecosystems and the need for interdisciplinary studies.


Subject(s)
Climate Change , Nitrogen/metabolism , Plants/metabolism , Soil/analysis , Stress, Physiological , Trees , Nitrogen/chemistry , Plant Development
6.
Plant Biol (Stuttg) ; 10(1): 86-96, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18211549

ABSTRACT

Nitrogen nutrition and salt stress experiments were performed in a greenhouse with hydroponic-cultured, salt-sensitive Grey poplar (Populus x canescens) plants to study the combined influence of different N sources (either 1 mm NO(3) (-) or NH(4)(+)) and salt (up to 75 mm NaCl) on leaf gas exchange, isoprene biosynthesis and VOC emissions. Net assimilation and transpiration proved to be highly sensitive to salt stress and were reduced by approximately 90% at leaf sodium concentrations higher than 1,800 microg Na g dry weight (dw)(-1). In contrast, emissions of isoprene and oxygenated VOC (i.e. acetaldehyde, formaldehyde and acetone) were unaffected. There was no significant effect of combinations of salt stress and N source, and neither NO(3)(-) or NH(4)(+) influenced the salt stress response in the Grey poplar leaves. Also, transcript levels of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PcDXR) and isoprene synthase (PcISPS) did not respond to the different N sources and only responded slightly to salt application, although isoprene synthase (PcISPS) activity was negatively affected at least in one of two experiments, despite high isoprene emission rates. A significant salt effect was the strong reduction of leaf dimethylallyl diphosphate (DMADP) content, probably due to restricted availability of photosynthates for DMADP biosynthesis. Further consequences of reduced photosynthetic gas exchange and maintaining VOC emissions are a very high C loss, up to 50%, from VOC emissions related to net CO(2) uptake and a strong increase in leaf internal isoprene concentrations, with maximum mean values up to 6.6 microl x l(-1). Why poplar leaves maintain VOC biosynthesis and emission under salt stress conditions, despite impaired photosynthetic CO(2) fixation, is discussed.


Subject(s)
Nitrogen/metabolism , Nitrogen/pharmacology , Organic Chemicals/metabolism , Plant Leaves/metabolism , Populus/drug effects , Populus/metabolism , Sodium Chloride/pharmacology , Ammonia/metabolism , Butadienes/metabolism , Carbon/metabolism , Hemiterpenes/metabolism , Nitrates/metabolism , Oxygen/chemistry , Oxygen/metabolism , Pentanes/metabolism , Photosynthesis/physiology , Pigments, Biological , Plant Transpiration , Time Factors , Volatilization
7.
Plant Biol (Stuttg) ; 6(6): 730-9, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15570479

ABSTRACT

In the present study, important components of carbon metabolism of mature leaves of young poplar trees (Populus x canescens) were determined. Carbohydrate concentrations in leaves and xylem sap were quantified at five different times during the day and compared with photosynthetic gas exchange measurements (net assimilation, transpiration and rates of isoprene emission). Continuously measured xylem sap flow rates, with a time resolution of 15 min, were used to calculate diurnal balances of carbon metabolism of whole mature poplar leaves on different days. Loss of photosynthetically fixed carbon by isoprene emission and dark respiration amounted to 1% and 20%. The most abundant soluble carbohydrates in leaves and xylem sap were glucose, fructose and sucrose, with amounts of approx. 2 to 12 mmol m(-2) leaf area in leaves and about 0.2 to 15 mM in xylem sap. Clear diurnal patterns of carbohydrate concentration in xylem sap and leaves, however, were not observed. Calculations of the carbon transport rates in the xylem to the leaves were based on carbohydrate concentrations in xylem sap and xylem sap flow rates. This carbon delivery amounted to about 3 micromol C m(-2) s(-1) during the day and approx. 1 micromol C m(-2) s(-1) at night. The data demonstrated that between 9 and 28 % of total carbon delivered to poplar leaves during 24 h resulted from xylem transport and, hence, provide a strong indication for a significant rate of carbon cycling within young trees.


Subject(s)
Carbon/metabolism , Plant Leaves/metabolism , Populus/metabolism , Biological Transport , Biometry , Butadienes/metabolism , Carbohydrate Metabolism , Carbohydrates/analysis , Circadian Rhythm , Climate , Hemiterpenes/metabolism , Pentanes/metabolism , Plant Leaves/chemistry , Plant Transpiration , Populus/chemistry , Time Factors
8.
Plant Biol (Stuttg) ; 6(3): 299-306, 2004 May.
Article in English | MEDLINE | ID: mdl-15143438

ABSTRACT

Waterlogging and flooding cause oxygen deprivation in the root system of trees. Since oxygen is essentially for mitochondrial respiration, this process cannot be maintained under anoxic conditions and must be replaced by other pathways. For the roots it is therefore a matter of survival to switch from respiration to alcoholic fermentation. Due to the low efficiency of this process to yield energy equivalents (ATP), energy and carbon metabolism of trees are usually strongly affected by oxygen deprivation, even if a rapid switch from respiration to fermentation is achieved. The roots can compensate for the low energy yield of fermentation either (1) by decreasing the demand for energy by a reduction of energy-dependent processes such as root growth and/or nutrient uptake, or (2) by consuming more carbohydrates per unit time in order to generate sufficient energy equivalents. In the leaves of trees, flooding and waterlogging cause a decline in the rates of photosynthesis and transpiration, as well as in stomatal conductance. It is assumed that, due to reduced phloem transport, soluble sugars and starch accumulate in the leaves of flooded trees, thereby negatively affecting the sugar supply of the roots. Thus, root growth and survival is negatively affected by both changes in root internal carbon metabolism and impaired carbon allocation to the roots by phloem transport. In addition, accumulation of toxic products of fermentation in the roots, such as acetaldehyde, can further impair root metabolism. A main feature of tolerance against flooding and waterlogging of trees seems to be the steady supply of carbohydrates to the roots in order to maintain alcoholic fermentation; in addition, roots of tolerant trees seem to avoid accumulation of fermentation-derived ethanol and acetaldehyde. From studies with flooding tolerant and non-tolerant tree species, it is hypothesized that (1) the transport of ethanol produced in the roots under hypoxic conditions into the leaves via the transpiration stream, (2) its conversion into acetyl-CoA in the leaves, and (3) its use in the plant's general metabolism, are mechanisms of flooding tolerance of trees.


Subject(s)
Carbon/metabolism , Trees/metabolism , Water Movements , Water/pharmacology , Adaptation, Physiological/drug effects , Adaptation, Physiological/physiology , Carbohydrate Metabolism , Greenhouse Effect , Nitrogen/metabolism , Trees/drug effects , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...