Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 78(9): 3939-3946, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35124892

ABSTRACT

BACKGROUND: Generalist predators that kill and eat other natural enemies can weaken biological control. However, pest suppression can be disrupted even if actual intraguild predation is infrequent, if predators reduce their foraging to lower their risk of being killed. In turn, predator-predator interference might be frequent when few other prey are available, but less common when herbivorous and detritus-feeding prey are plentiful. We used molecular gut-content analysis to track consumption of the predatory bug Geocoris sp. by the larger intraguild predator Nabis sp., in organic and conventional potato (Solanum tuberosum) fields. RESULTS: We found that higher densities of both aphids and thrips, two common herbivores, correlated with higher probability of detecting intraguild predation. Perhaps, Nabis foraging for these herbivores also encountered and ate more Geocoris. Surprisingly, likelihood of intraguild predation was not strongly linked to densities of either Nabis or Geocoris, or farming system, suggesting a greater importance for prey than predator community structure. Intriguingly, we found evidence that Geocoris fed more often on the detritus-feeding fly Scaptomyza pallida with increasing predator evenness. This would be consistent with Geocoris shifting to greater foraging on the ground, where S. pallida would be relatively abundant, in the face of greater risk of intraguild predation. CONCLUSION: Overall, our findings suggest that while herbivorous prey may heighten intraguild predation of Geocoris in the foliage, detritivores might support a shift to safer foraging on the ground. This provides further evidence that prey abundance and diversity can act to either heighten or relax predator-predator interference, depending on prey species identity and predator behavior. © 2022 Society of Chemical Industry.


Subject(s)
Aphids , Heteroptera , Animals , Food Chain , Herbivory , Predatory Behavior
2.
Environ Entomol ; 51(1): 94-107, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34864906

ABSTRACT

Insects harbor bacterial endosymbionts that provide their hosts with nutritional benefit or with protection against natural enemies, plant defenses, insecticides, or abiotic stresses. We used directed sequencing of 16S rDNA to identify and compare endosymbionts of Bactericera maculipennis (Crawford) and the western, central, and northwestern haplotypes of B. cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Both species are native to North America, are known to harbor the plant pathogen 'Candidatus Liberibacter solanacearum' and develop on shared host plants within the Convolvulaceae. The Old-World species Heterotrioza chenopodii (Reuter) (Psylloidea: Triozidae), now found in North America, was included as an outgroup. 16S sequencing confirmed that both Bactericera species harbor 'Candidatus Liberibacter solanacearum' and revealed that both species harbor unique strains of Wolbachia and Sodalis. However, the presence of Wolbachia and Sodalis varied among haplotypes of B. cockerelli. The central and western haplotypes harbored the same strains of Wolbachia, which was confirmed by Sanger sequencing of the wsp and ftsZ genes. Wolbachia was also detected in very low abundance from the northwestern haplotype by high-throughput sequencing of 16S but was not detected from this haplotype by PCR screening. The northwestern and central haplotypes also harbored Sodalis, which was not detected in the western haplotype. Heterotrioza chenopodii harbored an entirely different community of potential endosymbionts compared with the Bactericera spp. that included Rickettsia and an unidentified bacterium in the Enterobacteriaceae. Results of this study provide a foundation for further research on the interactions between psyllids and their bacterial endosymbionts.


Subject(s)
Hemiptera , Rhizobiaceae , Solanum tuberosum , Animals , Bacteria/genetics , Haplotypes , Hemiptera/microbiology , Plant Diseases/microbiology , Solanum tuberosum/microbiology
3.
Pest Manag Sci ; 78(9): 3769-3777, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34250727

ABSTRACT

BACKGROUND: Biological control by generalist predators can be mediated by the abundance and biodiversity of alternative prey. When alternative prey draw predator attacks away from the control target, they can weaken pest suppression. In other cases, a diverse prey base can promote predator abundance and biodiversity, reduce predator-predator interference, and benefit biocontrol. Here, we used molecular gut-content analysis to assess how community composition altered predation of Colorado potato beetle (Leptinotarsa decemlineata (Say)) by Nabis sp. and Geocoris sp. Predators were collected from organic or conventional potato (Solanum tuberosum L.) fields, encouraging differences in arthropod community composition. RESULTS: In organic fields, Nabis predation of potato beetles decreased with increasing arthropod richness and predator abundance. This is consistent with Nabis predators switching to other prey species when available and with growing predator-predator interference. In conventional fields these patterns were reversed, however, with potato beetle predation by Nabis increasing with greater arthropod richness and predator abundance. For Geocoris, Colorado potato beetle predation was more frequent in organic than in conventional fields. However, Geocoris predation of beetles was less frequent in fields with higher abundance of the detritus-feeding fly Scaptomyza pallida Zetterstedt, or of all arthropods, consistent with predators choosing other prey when available. CONCLUSION: Alternative prey generally dampened predation of potato beetles, suggesting these pests were less-preferred prey. Nabis and Geocoris differed in which alternative prey were most disruptive to feeding on potato beetles, and in the effects of farm management on predation, consistent with the two predator species occupying complementary feeding niches. © 2021 Society of Chemical Industry.


Subject(s)
Arthropods , Coleoptera , Heteroptera , Solanum tuberosum , Agriculture , Animals , Farms , Food Chain , Predatory Behavior
4.
Article in English | MEDLINE | ID: mdl-33073178

ABSTRACT

Plants deploy a variety of chemical and physical defenses to protect themselves against herbivores and pathogens. Organic farming seeks to enhance these responses by improving soil quality, ultimately altering bottom up regulation of plant defenses. While laboratory studies suggest this approach is effective, it remains unclear whether organic agriculture encourages more-active plant defenses under real-world conditions. Working on the farms of cooperating growers, we examined gene expression in the leaves of two potato (Solanum tuberosum) varieties, grown on organic vs. conventional farms. For one variety, Norkotah, we found significantly heightened initiation of genes associated with plant-defense pathways in plants grown in organic vs. conventional fields. Organic Norkotah fields exhibited lower levels of nitrate in soil and of nitrogen in plant foliage, alongside differences in communities of soil bacteria, suggesting possible links between soil management and observed differences in plant defenses. Additionally, numbers of predatory and phloem-feeding insects were higher in organic than conventional fields. A second potato variety, Alturas, which is generally grown using fewer inputs and in poorer-quality soils, exhibited lower overall herbivore and predator numbers, few differences in soil ecology, and no differences in gene-activity in organic and conventional farming systems. Altogether, our results suggest that organic farming has the potential to increase plants' resistance to herbivores, possibly facilitating reduced need for insecticide applications. These benefits appear to be mediated by plant variety and/or farming context.

5.
Environ Entomol ; 48(6): 1323-1330, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31553792

ABSTRACT

Soil chemistry and microbial diversity can impact the vigor and nutritive qualities of plants, as well as plants' ability to deploy anti-herbivore defenses. Soil qualities often vary dramatically on organic versus conventional farms, reflecting the many differences in soil management practices between these farming systems. We examined soil-mediated effects on herbivore performance by growing potato plants (Solanum tuberosum L.) in soils collected from organic or conventional commercial farm fields, and then exposing these plants to herbivory by green peach aphids (Myzus persicae Sulzer, Hemiptera: Aphididae) and/or Colorado potato beetles (Leptinotarsa decemlineata Say, Coleoptera: Chrysomelidae). Responses of the two potato pests varied dramatically. Survivorship of Colorado potato beetles was almost 3× higher on plants grown in organic than in conventional soils, but was unaffected by the presence of aphids. In contrast, aphid colony growth was twice as rapid when aphids were reared alone rather than with Colorado potato beetles, but was unaffected by soil type. We saw no obvious differences in soil nutrients when comparing organic and conventional soils. However, we saw a higher diversity of bacteria in organic soils, and potato plants grown in this soil had a lower carbon concentration in foliar tissue. In summary, the herbivore species differed in their susceptibility to soil- versus competitor-mediated effects, and these differences may be driven by microbe-mediated changes in host plant quality. Our results suggest that soil-mediated effects on pest growth can depend on herbivore species and community composition, and that soil management strategies that promote plant health may also increase host quality for pests.


Subject(s)
Aphids , Coleoptera , Solanum tuberosum , Animals , Colorado , Population Growth , Soil
6.
Insects ; 10(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331037

ABSTRACT

The sweetpotato whitefly, Bemisia tabaci, is a pest of greenhouse-grown tomato. Restrictions on insecticides in enclosed structures and the presence of commercial pollinators limit the options for the chemical control of whiteflies in greenhouses, increasing the importance of biological controls. Dicyphus hesperus is a zoophytophagous mirid predator native to North America. Three release rates of D. hesperus were evaluated on greenhouse tomato for control of the sweetpotato whitefly. The release rates were one, two or three adult D. hesperus per tomato plant each week for three weeks in cages containing four tomato plants and one mullein banker plant. There were fewer whitefly eggs in cages receiving predators than untreated cages one week after the third release, and fewer whitefly nymphs in cages receiving predators two weeks after the third release. There were no statistical differences in whitefly eggs or nymphs among predator release treatments. The highest release rate resulted in a 60% reduction in whitefly nymphs. Forty-two days after the first predator releases, there were no differences among release treatments in the number of D. hesperus. Our results indicate that D. hesperus can contribute management of B. tabaci on greenhouse tomato, but that it may be insufficient as a sole strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...