Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762173

ABSTRACT

The effect of A. ochraceus proteinase on the proteins of the human hemostasis system, fibrin, fibrinogen, plasminogen, protein C, and factor X, was studied. These proteins are key targets for proteolytic enzymes in therapy and diagnosis of thromboembolic complications. It was shown that A. ochraceus proteinase efficiently cleaves fibrin and fibrinogen, but does not act precisely, since it cuts all three subunits of these proteins. The proteinase did not have an activating effect on the plasminogen, a precursor of plasminogen and plasmin. The proteinase of A. ochraceus was shown to be the first fungal proteinase with proven activating activity towards the human hemostasis system factors protein C and factor X. For protein C activation, A. ochraceus proteinase requires Ca2+ ions. The enzyme was found to be sensitive to thrombin inhibitors, but not to plasmin inhibitors. A proteolytic action profile of the scope of this proteinase as a proteinase with activating protein C, factor X, and plasmin-like activity was proposed.

2.
Life (Basel) ; 11(8)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34440526

ABSTRACT

In this study, we investigated the properties of proteolytic enzymes of two species of Aspergillus, Aspergillus flavus 1 (with a high degree of pathogenicity) and Aspergillus ochraceus L-1 (a conditional pathogen), and their effects on various components of the hemostasis system (in vitro) in the case of their penetration into the bloodstream. We showed that micromycete proteases were highly active in cleaving both globular (albuminolysis) and fibrillar (fibrin) proteins, and, to varying degrees, they could coagulate the plasma of humans and animals (due to proteolysis of factors of the blood coagulation cascade) but were not able to coagulate fibrinogen. The proteases of both Aspergillus fully hydrolyzed thrombi in 120-180 min. Micromycetes did not show hemolytic activity but were able to break down hemoglobin.

3.
Biotechnol Rep (Amst) ; 29: e00576, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33392004

ABSTRACT

A new method has been developed to increase the productivity of aspergilli - producers of extracellular proteinases based on their cultivation on vermiculite under solid-state fermentation conditions. The productivity of the mycelium Aspergillus ochraceus L-1 and Aspergillus ustus 1 was 3-18 times higher not only in comparison with submerged cultivation, but also in comparison with growth on other carriers studied under solid-state fermentation conditions. Vermiculite can be considered as a new promising carrier for solid-state fermentation of micromycetes.

4.
Biotechnol Rep (Amst) ; 19: e00265, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29992099

ABSTRACT

A scheme for screening of micromycetes - producers of proteases with the activity of hemostasis system proteins, based on their enzymatic indices determination and the activity towards chromogenic peptide substrates for proteins of the hemostasis system was developed. Depending on the ability of proteases producers to cleave such substrates, an enzymatic reaction in conditions containing human plasma is suggested, which makes it possible to identify the potentiality of the target plasma hemostasis proenzymes activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...