Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35336656

ABSTRACT

Multi-cropping systems play an important role in improving the quality of soil properties. A field experiment was carried at the Experimental Station of Vytautas Magnus University Agriculture Academy (Lithuania) in 2017 to 2019. The aim of the study was to compare agrophysical and biological properties of the soil in the multi-cropping systems of sole (spring barley, spring wheat, pea, caraway), binary (spring barley-caraway, spring wheat-caraway, pea-caraway) and trinary (spring barley-caraway-white clover, spring wheat-caraway-white clover, pea-caraway-white clover) crops. In the second and the third years of caraway cultivation, when solely caraway was grown, the total nitrogen content was significantly lower than in binary and trinary crops (8.5% and 17.4%, respectively). The results indicated that the highest organic carbon content was in the third year of caraway cultivation in trinary crop when caraway was grown with peas and white clover. In the third year, the highest saccharase and urease activity was found in trinary crop where caraway was grown with spring barley and white clover. A strong positive correlation was observed between the content of saccharase and urease and the total nitrogen, organic carbon, and potassium available in the soil. The results of the study suggest that multi-cropping is important for soil conservation and the sustainability of agro-ecosystems.

2.
Sci Total Environ ; 662: 786-795, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30708294

ABSTRACT

Different tillage technologies have different effects on CO2 emissions from soil. Unfortunately, little information exists about the impact of different types of tillage as compared with no-tillage, and the main controls. The aim of this research is to determine the relationship between physicomechanical, chemical and biological properties of soil and CO2 emissions from differently tilled soils under the climatic conditions of central Lithuania before and after autumn tillage. The studies were conducted in 2009-2012 and 2014 at the Experimental Station of Aleksandras Stulginskis University in Central Lithuania. Different tillage technologies were applied: deep ploughing at 23-25 cm depth (DP); shallow ploughing at 12-15 cm depth (SP); deep cultivation with a cultivator at 25-27 cm depth (DC); shallow cultivation with a disc harrow at 12-15 cm depth (SC); and no-tillage (NT). The correlation of physicomechanical, chemical and biological soil properties with CO2 emissions was determined. During all the experimental period total CO2 emissions from soil in DP, SP, DC, SC and NT technologies were respectively 6.05, 4.25, 4.97, 4.42, 3.94 µmol m-2 s-1 before autumn soil tillage and 29.88, 22.50, 16.73, 13.72, 10.00 µmol m-2 s-1 after autumn tillage. Negative correlation between soil temperature and CO2 emissions before the autumn tillage from soil was evidenced (r = -0.98). A strong negative correlation between soil respiration and total soil porosity was observed. Correlation between aeration soil porosity and CO2 emissions was strong. After autumn tillage, the strongest correlations were found between soil penetration resistance and respiration in the upper (r = -0.75) and deeper (r = -0.71) layers. In autumn, a significant strong correlation (r = 0.78) between soil respiration and aeration porosity was obtained in the upper soil layer under ploughing or cultivation. This study revealed that CO2 emissions were significantly higher immediately after autumn ploughing technologies compared to deep and shallow cultivation and no-tillage.

3.
Sci Total Environ ; 626: 1402-1413, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29898547

ABSTRACT

The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control treatment. The experimental research results reveal the reduction of CO2 emissions in shallow tillage to approximately 20.14% (and that in deep tillage to approximately 19.16%) when works were performed by different biological preparation usage scenarios. This experimental research demonstrates the efficient use of the special adaptation of a new biotechnological method for the reduction of the energy consumption and CO2 gas emissions of agricultural machinery.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Carbon Dioxide/analysis , Conservation of Natural Resources , Soil/chemistry , Temperature
4.
Int J Biometeorol ; 61(10): 1765-1775, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28484838

ABSTRACT

Climate warming and a shift in the timing of phenological phases, which lead to changes in the duration of the vegetation period may have an essential impact on the productivity of winter crops. The main purpose of this study is to examine climate change-related long-term (1961-2015) changes in the duration of both initial (pre-winter) and main (post-winter) winter wheat vegetation seasons and to present the projection of future phenological changes until the end of this century. Delay and shortening of pre-winter vegetation period, as well as the advancement and slight extension of the post-winter vegetation period, resulted in the reduction of whole winter wheat vegetation period by more than 1 week over the investigated 55 years. Projected changes in the timing of phenological phases which define limits of a main vegetation period differ essentially from the observed period. According to pessimistic (Representative Concentration Pathways 8.5) scenario, the advancement of winter wheat maturity phase by almost 30 days and the shortening of post-winter vegetation season by 15 days are foreseen for a far (2071-2100) projection. An increase in the available chilling amount is specific not only to the investigated historical period (1960-2015) but also to the projected period according to the climate change scenarios of climate warming for all three projection periods. Consequently, the projected climate warming does not pose a threat of plant vernalization shortage in the investigated geographical latitudes.


Subject(s)
Climate Change , Triticum/growth & development , Lithuania , Models, Theoretical , Seasons , Temperature
5.
Sci Total Environ ; 514: 1-9, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25644993

ABSTRACT

Intensive agricultural production strongly influences the global processes that determine climate change. Thus, tillage can play a very important role in climate change. The intensity of soil carbon dioxide (CO2) emissions, which contribute to the greenhouse effect, can vary depending on the following factors: the tillage system used, meteorological conditions (which vary in different regions of the world), soil properties, plant residue characteristics and other factors. The main purpose of this research was to analyse and assess the effects of autumn tillage systems with different intensities on CO2 emissions from soils during different seasons and under the climatic conditions of Central Lithuania. The research was conducted at the Experimental Station of Aleksandras Stulginskis University from 2009 to 2012; and in 2014. The soils at the experimental site were classified as Eutric Endogleyic Planosol (Drainic). The investigations were conducted using five tillage systems with different intensities, typical of the Baltic Region. Deep conventional ploughing was performed at a depth of 230-250 mm, shallow ploughing was conducted at a depth of 120-150 mm, deep loosening was conducted at depths of 250-270 mm, and shallow loosening was conducted at depths of 120-150 mm. The fifth system was a no-tillage system. Overall, autumn tillage resulted in greater CO2 emissions from the soil over both short- and long-term periods under the climatic conditions of Central Lithuania, regardless of the tillage system applied. The highest soil CO2 emissions were observed for the conventional deep ploughing tillage system, and the lowest emissions were observed for the no-tillage system. The meteorological conditions greatly influenced the CO2 emissions from the soil during the spring. Soil CO2 emissions were enhanced as precipitation and the air and soil temperatures increased. Long-term investigations regarding the dynamics of CO2 emissions from soils during the maize vegetation period indicated that autumn tillage systems affect the total soil CO2 emissions. The highest (2.17 µmol m(-2)s(-1)) soil CO2 emissions during the vegetation period were observed in the deep ploughing tillage system, and the lowest values were observed (1.59 µmol m(-2)s(-1)) in the no-tillage system.

SELECTION OF CITATIONS
SEARCH DETAIL
...