Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mycorrhiza ; 34(1-2): 95-105, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38183463

ABSTRACT

Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associated Oreomunnea mexicana (Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of the ITS2 (fungi) and 16S rRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.


Subject(s)
Microbiota , Mycorrhizae , Mycorrhizae/physiology , Soil , RNA, Ribosomal, 16S , Forests , Trees/microbiology , Soil Microbiology , Fungi/genetics
2.
Sci Adv ; 9(49): eadj1989, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38055826

ABSTRACT

Soils are the largest source of atmospheric nitrous oxide (N2O), a powerful greenhouse gas. Dry soils rarely harbor anoxic conditions to favor denitrification, the predominant N2O-producing process, yet, among the largest N2O emissions have been measured after wetting summer-dry desert soils, raising the question: Can denitrifiers endure extreme drought and produce N2O immediately after rainfall? Using isotopic and molecular approaches in a California desert, we found that denitrifiers produced N2O within 15 minutes of wetting dry soils (site preference = 12.8 ± 3.92 per mil, δ15Nbulk = 18.6 ± 11.1 per mil). Consistent with this finding, we detected nitrate-reducing transcripts in dry soils and found that inhibiting microbial activity decreased N2O emissions by 59%. Our results suggest that despite extreme environmental conditions-months without precipitation, soil temperatures of ≥40°C, and gravimetric soil water content of <1%-bacterial denitrifiers can account for most of the N2O emitted when dry soils are wetted.


Subject(s)
Bacteria , Denitrification , Soil , Nitrous Oxide/analysis , California
3.
Glob Chang Biol ; 29(11): 3205-3220, 2023 06.
Article in English | MEDLINE | ID: mdl-36907979

ABSTRACT

Warming-induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2 ) over comparatively short timescales. Using an automated sensor system, we measured soil CO2 flux dynamics in the Colorado Desert-a system characterized by pronounced transitions from dry-to-wet soil conditions-through a multi-year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2 pulses following wetting were highly predictable from peak instantaneous CO2 flux measurements. CO2 pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2 pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2 pulses in low N deposition sites, whereas adding N decreased CO2 pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2 fluxes reported globally at 299.5 µmol CO2  m-2  s-1 . Our results suggest that soils have the capacity to emit high amounts of CO2 within small timeframes following infrequent wetting, and pulse sizes reflect a non-linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2 emissions occurred when multiple resources were amended simultaneously in historically resource-limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.


Subject(s)
Carbon Dioxide , Soil , Temperature , Nitrogen , Colorado , Water
4.
Ecology ; 104(2): e3930, 2023 02.
Article in English | MEDLINE | ID: mdl-36451599

ABSTRACT

Climate change is increasing the variability of precipitation, altering the frequency of soil drying-wetting events and the distribution of seasonal precipitation. These changes in precipitation can alter nitrogen (N) cycling and stimulate nitric oxide (NO) emissions (an air pollutant at high concentrations), which may vary according to legacies of past precipitation and represent a pathway for ecosystem N loss. To identify whether precipitation legacies affect NO emissions, we excluded or added precipitation during the winter growing season in a Pinyon-Juniper dryland and measured in situ NO emissions following experimental wetting. We found that the legacy of both excluding and adding winter precipitation increased NO emissions early in the following summer; cumulative NO emissions from the winter precipitation exclusion plots (2750 ± 972 µg N-NO m-2 ) and winter water addition plots (2449 ± 408 µg N-NO m-2 ) were higher than control plots (1506 ± 397 µg N-NO m-2 ). The increase in NO emissions with previous precipitation exclusion was associated with inorganic N accumulation, while the increase in NO emissions with previous water addition was associated with an upward trend in microbial biomass. Precipitation legacies can accelerate soil NO emissions and may amplify ecosystem N loss in response to more variable precipitation.


Subject(s)
Ecosystem , Juniperus , Nitrogen/analysis , Nitric Oxide , Juniperus/metabolism , Soil , Water
5.
J Microbiol Methods ; 172: 105908, 2020 05.
Article in English | MEDLINE | ID: mdl-32234512

ABSTRACT

The reduction of nitrous oxide (N2O) to N2 represents the key terminal step in canonical denitrification. Nitrous oxide reductase (NosZ), the enzyme associated with this biological step, however, is not always affiliated with denitrifying microorganisms. Such organisms were shown recently to possess a Clade II (atypical) nosZ gene, in contrast to Clade I (typical) nosZ harbored in more commonly studied denitrifiers. Subsequent phylogenetic analyses have shown that Clade II NosZ are affiliated with a much broader diversity of microorganisms than those with Clade I NosZ, the former including both non-denitrifiers and denitrifiers. Most studies attempting to characterize the nosZ gene diversity using DNA-based PCR approaches have only focused on Clade I nosZ, despite recent metagenomic sequencing studies that have demonstrated the dominance of Clade II nosZ genes in many ecosystems, particularly soil. As a result, these studies have greatly underestimated the genetic potential for N2O reduction present in ecosystems. Because the high diversity of Clade II NosZ makes it impossible to design a universal primer set that would effectively amplify all nosZ genes in this clade, we developed a suite of primer sets to specifically target seven of ten designated subclades of Clade II nosZ genes. The new primer sets yield suitable product sizes for paired end amplicon sequencing and qPCR, demonstrated here in their use for both conventional single-reaction and multiplex array platforms. In addition, we show the utility of these primers for detecting nosZ gene transcripts from mRNA extracted from soil.


Subject(s)
Genes, Bacterial/genetics , Multiplex Polymerase Chain Reaction/methods , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Soil Microbiology , Bacteria/classification , Bacteria/genetics , DNA Primers , DNA, Bacterial , Ecosystem , Metagenome , Metagenomics/methods , Myxococcales/genetics , Nitrous Oxide/metabolism , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...