Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7294, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37996428

ABSTRACT

Tropical cyclones (TCs) can adversely affect economic development for more than a decade. Yet, these long-term effects are not accounted for in current estimates of the social cost of carbon (SCC), a key metric informing climate policy on the societal costs of greenhouse gas emissions. We here derive temperature-dependent damage functions for 41 TC-affected countries to quantify the country-level SCC induced by the persistent growth effects of damaging TCs. We find that accounting for TC impacts substantially increases the global SCC by more than 20%; median global SCC increases from US$ 173 to US$ 212 per tonne of CO2 under a middle-of-the-road future emission and socioeconomic development scenario. This increase is mainly driven by the strongly TC-affected major greenhouse gas emitting countries India, USA, China, Taiwan, and Japan. This suggests that the benefits of climate policies could currently be substantially underestimated. Adequately accounting for the damages of extreme weather events in policy evaluation may therefore help to prevent a critical lack of climate action.

2.
PLoS One ; 15(9): e0239293, 2020.
Article in English | MEDLINE | ID: mdl-32966335

ABSTRACT

Economies are frequently affected by natural disasters and both domestic and overseas financial crises. These events disrupt production and cause multiple other types of economic losses, including negative impacts on the banking system. Understanding the transmission mechanism that causes various negative second-order post-catastrophe effects is crucial if policymakers are to develop more efficient recovery strategies. In this work, we introduce a credit-based adaptive regional input-output (ARIO) model to analyse the effects of disasters and crises on the supply chain and bank-firm credit networks. Using real Japanese networks and the exogenous shocks of the 2008 Lehman Brothers bankruptcy and the Great East Japan Earthquake (March 11, 2011), this paper aims to depict how these negative shocks propagate through the supply chain and affect the banking system. The credit-based ARIO model is calibrated using Latin hypercube sampling and the design of experiments procedure to reproduce the short-term (one-year) dynamics of the Japanese industrial production index after the 2008 Lehman Brothers bankruptcy and the 2011 Great East Japan earthquake. Then, through simulation experiments, we identify the chemical and petroleum manufacturing and transport sectors as the most vulnerable Japanese industrial sectors. Finally, the case of the 2011 Great East Japan Earthquake is simulated for Japanese prefectures to understand differences among regions in terms of globally engendered indirect economic losses. Tokyo and Osaka prefectures are the most vulnerable locations because they hold greater concentrations of the above-mentioned vulnerable industrial sectors.


Subject(s)
Commerce/economics , Economics , Natural Disasters/economics , Bankruptcy/economics , Earthquakes/economics , Humans , Japan , Tokyo
3.
PLoS One ; 12(10): e0186467, 2017.
Article in English | MEDLINE | ID: mdl-29059233

ABSTRACT

This work aims to study and explain the business cycle correlations of the Japanese production network. We consider the supplier-customer network, which is a directed network representing the trading links between Japanese firms (links from suppliers to customers). The community structure of this network is determined by applying the Infomap algorithm. Each community is defined by its GDP and its associated business cycle. Business cycle correlations between communities are estimated based on copula theory. Then, based on firms' attributes and network topology, these correlations are explained through linear econometric models. The results show strong evidence of business cycle correlations in the Japanese production network. A significant systemic risk is found for high negative or positive shocks. These correlations are explained mainly by the sector and by geographic similarities. Moreover, our results highlight the higher vulnerability of small communities and small firms, which is explained by the disassortative mixing of the production network.


Subject(s)
Commerce , Risk , Algorithms , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...