Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 193: 111101, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32434136

ABSTRACT

We report the first observation of an efficient, native membrane conjugation mechanism via positively charged, linear oligo-amines. Clustering of membrane fragments relies on electrostatic interactions between the net negative charge of the membranes and the positively charged, water-soluble mediators. This conjugation principle is demonstrated with two different bacterial membranes in which are embedded either the intrinsic membrane protein (MP) bacteriorhodopsin (bR) or the more recently identified xanthorhodopsin (XR). As determined by their characteristic UV-vis absorption spectra and by circular dichroism, the MPs are not significantly perturbed by the oligo-amines carrying from +3 to +6 positive charges. Light microscopy and scanning electron microscope (SEM) imaging provide direct evidence for membrane conjugation. Process efficiency was found to be correlated with the net charge of the oligo-amine used. Membrane conjugation is accomplished within a wide range of pH values (7-2.5); is reversed by NaCl; and does not require the presence of a precipitant (e.g. PEG) nor Ca2+ ions. Some evidence for bilayer fusion is also observed, but only in the presence of the +6 oligo-amine analog.


Subject(s)
Amines/chemistry , Bacterial Proteins/chemistry , Bacteriorhodopsins/chemistry , Rhodopsins, Microbial/chemistry , Hydrogen-Ion Concentration , Particle Size , Static Electricity , Surface Properties
2.
Bioelectrochemistry ; 123: 201-210, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29807268

ABSTRACT

The most widely reported catalyst in microbial electrochemical cells (MEC) cathodes is platinum (Pt). The disadvantages of Pt include its high cost and sensitivity to various molecules. In this research an exfoliated molybdenum di-sulfide (MoS2-EF) catalyst was synthesized. The size of the obtained particles was 200 ±â€¯50 nm, 50-fold smaller than the pristine MoS2 catalyst. The MoS2-EF Raman spectrum displays the E12g and A1g peaks at 373 cm-1 and 399 cm-1. Electrochemical characterization by linear sweep voltammetry (LSV) of a rotating disc electrode RDE showed that the current density of Pt in 0.5 M H2SO4 was 3.3 times higher than MoS2-EF. However, in phosphate buffer (pH-7) electrolyte this ratio diminished to 1.9. The polarization curve of Pt, MoS2-EF and the pristine MoS2 electrodes, at -1.3 V in MEC configuration in abiotic conditions exhibit current densities of 17.46, 12.67 and 3.09 mA cm-2, respectively. Hydrogen evolution rates in the same MEC with a Geobacter sulfurreducens anode and Pt, MoS2-EF and the pristine MoS2 cathodes were 0.106, 0.133 and 0.083 m3 d-1 m-3, respectively. The results in this study show that MoS2-EF led to highly purified hydrogen and that this catalyst can serve as an electrochemical active and cost-effective alternative to Pt.


Subject(s)
Bioelectric Energy Sources/microbiology , Disulfides/chemistry , Geobacter/metabolism , Hydrogen/metabolism , Molybdenum/chemistry , Bioelectric Energy Sources/economics , Catalysis , Electrodes , Platinum/chemistry
3.
J Colloid Interface Sci ; 314(1): 304-9, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17574563

ABSTRACT

The surfactant templated gold-silver nanowire growth process in a thin solution film was probed by cryo-transmission electron microscopy (cryo-TEM). The increasing surfactant concentration upon film drying appears to induce phase transformations in the film and form a liquid crystalline template for the nanowires growth. High-resolution transmission electron microscopy (HRTEM) and electron holography revealed that the nanowires were polycrystalline with some preferred crystallite orientations and had a roughly cylindrical cross-section. Further improvement of the technique may lead to highly ordered metal nanowire arrays within the surfactant matrix similar to the closely related mesoporous materials.

4.
Langmuir ; 23(3): 1496-9, 2007 Jan 30.
Article in English | MEDLINE | ID: mdl-17241079

ABSTRACT

Gold-palladium nanocrystals with starlike shapes and high aspect ratio nanowires were grown in a surfactant solution. The incorporation of palladium into the growing gold nanostructures induced nanowire formation with high yield. Kinetic control of the metal deposition rate through tuning of the pH value to about 5 was crucial for the nanowire growth. The nanostructures were characterized by high-resolution electron microscopy and energy-dispersive X-ray spectroscopy. The Au-Pd nanowires were deposited on functionalized silicon wafers.

5.
J Am Chem Soc ; 128(34): 11006-7, 2006 Aug 30.
Article in English | MEDLINE | ID: mdl-16925401

ABSTRACT

Silver nanocrystals grown on a poly(dG)-poly(dC) double stranded DNA scaffold displayed circular dichroism at their surface plasmon excitation band. This chiral plasmon signature was not observed in a control experiment where silver nanocrystals of similar size were produced without the DNA template and adsorbed to the DNA. It is concluded that the DNA templated Ag nanocrystals had a preferred structural handedness.


Subject(s)
DNA/chemistry , Metal Nanoparticles , Silver/chemistry , Circular Dichroism , Microscopy, Electron, Transmission , Stereoisomerism
6.
Langmuir ; 22(3): 867-70, 2006 Jan 31.
Article in English | MEDLINE | ID: mdl-16430239

ABSTRACT

Thin, long gold/silver nanowires were grown on substrates in thin surfactant solution films. This growth process occurred exclusively in thinning aqueous films as the water evaporated, and elongated surfactant template structures were formed. The nanowire growth depended on the presence of a relatively high concentration of silver ions (typical Ag:Au mole ratio of 1:1). Tuning the pH value to about 5 in the growth solution was crucial for the nanowire growth. Further development of this process may lead to a simple wet chemical technique for the fabrication of relatively uniform arrays of metal nanowires on surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...