Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762043

ABSTRACT

New organic nanostructures were synthesized by introducing 2-methylbenzimidazole (MBI) molecules from a melt, gas phase, or alcoholic solution into nanosized voids of borate porous glasses (PG), nanotubes of chrysotile asbestos (ChA), and mesoporous silica (MS). The incorporation of MBI into borate glasses with different pore sizes is accompanied by the appearance of several phases formed by nanocrystallites which have a MBI crystal structure, but somewhat differ in lattice parameters. The size of some crystallites significantly exceeds the size of nanopores, which indicates the presence of long-scale correlations of the crystal structure. The size of MBI nanocrystallites in ChA was close to the diameter of nanotubes (D ~10 nm), which shows the absence of crystal structure correlations. The XRD pattern of mesoporous silica filled by MBI does not exhibit reflections caused by MBI and a presence of MBI was confirmed only by the analysis of correlation function. The incorporation of MBI molecules into matrices is observed through optical IR absorption spectroscopy (FTIR) and photoluminescence. Introducing MBI in ChA and MS is followed by the appearance of bright green photoluminescence, the spectral structure of which is analogous to MBI crystals but slightly shifted in the blue region, probably due to a quantum-size effect. The influence of MBI inclusion in PG and ChA on the permittivity, dielectric losses, conductivity, and parameters of their hopping conductivity is analyzed.


Subject(s)
Nanopores , Nanotubes , Silicon Dioxide/chemistry , Borates/chemistry , Asbestos, Serpentine , Nanotubes/chemistry
2.
Materials (Basel) ; 16(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37374601

ABSTRACT

Thin films of BaM hexaferrite (BaFe12O19) were grown on α-Al2O3(0001) substrates by laser molecular beam epitaxy. Structural, magnetic, and magneto-optical properties were studied using medium-energy ion scattering, energy dispersive X-ray spectroscopy, atomic force microscopy, X-ray diffraction, magneto-optical spectroscopy, and magnetometric techniques, and the dynamics of magnetization by ferromagnetic resonance method. It was shown that even a short time annealing drastically changes the structural and magnetic properties of films. Only annealed films demonstrate magnetic hysteresis loops in PMOKE and VSM experiments. The shape of hysteresis loops depends on thickness of films showing practically rectangular loops and high value of remnant magnetization (Mr/Ms~99%) for thin films (50 nm) and much broader and sloped loops in thick (350-500 nm) films. The magnitude of magnetization 4πMs ≈ 4.3 kG in thin films corresponds to that in bulk BaM hexaferrite. Photon energy and sign of bands in magneto-optical spectra of thin films correspond to ones observed earlier in bulk samples and films of BaM hexaferrite. FMR spectra of 50 nm films at 50 GHz consist of a number of narrow lines. The width of main line ΔH~20 Oe is lower than has been reported up to now.

3.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903111

ABSTRACT

Single crystals of 2-methylbenzimidazolium perchlorate were prepared for the first time with a slow evaporation method from an aqueous solution of a mixture of 2-methylbenzimidazole (MBI) crystals and perchloric acid HClO4. The crystal structure was determined by single crystal X-ray diffraction (XRD) and confirmed by XRD of powder. Angle-resolved polarized Raman and Fourier-transform infrared (FTIR) absorption spectra of crystals consist of lines caused by molecular vibrations in MBI molecule and ClO4- tetrahedron in the region ν = 200-3500 cm-1 and lattice vibrations in the region of 0-200 cm-1. Both XRD and Raman spectroscopy show a protonation of MBI molecule in the crystal. An analysis of ultraviolet-visible (UV-Vis) absorption spectra gives an estimation of an optical gap Eg~3.9 eV in the crystals studied. Photoluminescence spectra of MBI-perchlorate crystals consist of a number of overlapping bands with the main maximum at Ephoton ≅ 2.0 eV. Thermogravimetry-differential scanning calorimetry (TG-DSC) revealed the presence of two first-order phase transitions with different temperature hysteresis at temperatures above room temperature. The higher temperature transition corresponds to the melting temperature. Both phase transitions are accompanied by a strong increase in the permittivity and conductivity, especially during melting, which is similar to the effect of an ionic liquid.

4.
Sci Technol Adv Mater ; 18(1): 351-363, 2017.
Article in English | MEDLINE | ID: mdl-28685003

ABSTRACT

Thin (4-20 nm) yttrium iron garnet (Y3Fe5O12, YIG) layers have been grown on gadolinium gallium garnet (Gd3Ga5O12, GGG) 111-oriented substrates by laser molecular beam epitaxy in 700-1000 °C growth temperature range. The layers were found to have atomically flat step-and-terrace surface morphology with step height of 1.8 Å characteristic for YIG(111) surface. As the growth temperature is increased from 700 to 1000 °C the terraces become wider and the growth gradually changes from layer by layer to step-flow regime. Crystal structure studied by electron and X-ray diffraction showed that YIG lattice is co-oriented and laterally pseudomorphic to GGG with small rhombohedral distortion present perpendicular to the surface. Measurements of magnetic moment, magneto-optical polar and longitudinal Kerr effect (MOKE), and X-ray magnetic circular dichroism (XMCD) were used for study of magnetization reversal for different orientations of magnetic field. These methods and ferromagnetic resonance studies have shown that in zero magnetic field magnetization lies in the film plane due to both shape and induced anisotropies. Vectorial MOKE studies have revealed the presence of an in-plane easy magnetization axis. In-plane magnetization reversal was shown to occur through combination of reversible rotation and abrupt irreversible magnetization jump, the latter caused by domain wall nucleation and propagation. The field at which the flip takes place depends on the angle between the applied magnetic field and the easy magnetization axis and can be described by the modified Stoner-Wohlfarth model taking into account magnetic field dependence of the domain wall energy. Magnetization curves of individual tetrahedral and octahedral magnetic Fe3+ sublattices were studied by XMCD.

SELECTION OF CITATIONS
SEARCH DETAIL
...