Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 648: 755-767, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37321095

ABSTRACT

HYPOTHESIS: This article presents a free-radical polymerization method in a mesostructured system - free of any surfactants, protective colloids, or other auxiliary agents. It is applicable for a large variety of industrially relevant vinylic monomers. The aim of this work is to study the impact of surfactant-free mesostructuring on the polymerization kinetics and the polymer derived. EXPERIMENTS: So-called surfactant-free microemulsions (SFME) were investigated as reaction media with a simple composition comprising water, a hydrotrope (ethanol, n-propanol, isopropanol, tert-butyl alcohol), and the monomer as the reactive oil phase (methyl methacrylate). Polymerization reactions were performed using oil-soluble, thermal- and UV-active initiators (surfactant-free microsuspension polymerization) and water-soluble, redox-active initiators (surfactant-free microemulsion polymerization). Structural analysis of the SFMEs used and the polymerization kinetics were followed by dynamic light scattering (DLS). Dried polymers were analyzed with regard to their conversion yield by mass balance, the corresponding molar masses were determined using gel permeation chromatography (GPC), and the morphology was investigated by light microscopy. FINDINGS: All alcohols are suitable hydrotropes to form SFMEs, except for ethanol, which forms a molecularly disperse system. We observe significant differences in the polymerization kinetics and the molar masses of the polymers obtained. Ethanol leads to significantly higher molar masses. Within a system, higher concentrations of the other alcohols investigated give rise to less pronounced mesostructuring, lower conversions, and lower average molar masses. It could be demonstrated that the effective concentration of alcohol in the oil-rich pseudophases as well as the repulsive effect of the surfactant-free, alcohol-rich interphases constitute the relevant factors influencing polymerization. Concerning the morphology, the polymers derived range from powder-like polymers in the so-called "pre-Ouzo region" over porous-solid polymers in the bicontinuous region to dense, almost compacted, transparent polymers in unstructured regions, comparable to the findings for surfactant-based systems reported in the literature. Polymerizations in SFME comprise a new intermediate between well-known solution (i.e., molecularly dispersed) and microemulsion respectively microsuspension polymerization processes.

2.
Langmuir ; 37(13): 3817-3827, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33724851

ABSTRACT

Even in the absence of surfactants, polymers, or particles, spontaneous emulsions produced by dilution with water can be stable over days. This "Ouzo effect" used by the industry is obtained by rapid dilution from an identified "pre-Ouzo" domain of composition where weak aggregates are present: nanometer-sized clusters covered by a surface layer enriched in a hydrotrope such as ethanol. In these systems, Ostwald ripening is not an effective destabilizing mechanism. Using in situ autodilution small-angle X-ray scattering (SAXS), we follow the morphological transitions occurring in a ternary mixture of water/n-octanol/ethanol throughout the monophasic and biphasic regions. This allows for the first time an online characterization of the multiscale coexisting microstructures. Small-angle neutron scattering (SANS) profiles on metastable emulsions as well as phase-separated samples complete the SAXS data, taking advantage of contrast variation via isotopic substitution. After crossing the phase boundary into the two-phase region, coexisting phases are both ternary solutions structured at the nanometer scale when the emulsion is stable. The transition from single phase to two phases is asymmetric around the plait point. When the initial concentration of the hydrotrope is below the minimum hydrotrope concentration (MHC), emulsification failure occurs, i.e., emulsions cream within seconds. Beyond MHC, the low interfacial tension between coexisting ternary fluids results in a Laplace pressure below 100 Pa, explaining the puzzling resilience of spontaneous emulsion to the universal mechanism of Ostwald ripening.

3.
Phys Chem Chem Phys ; 21(15): 8054-8066, 2019 Apr 21.
Article in English | MEDLINE | ID: mdl-30932113

ABSTRACT

In this paper, we consider the influence of H-bond donor and acceptor functionalities on the formation of mesoscale inhomogeneities in ternary systems. It was found that hydrogen-bonding re-enforces such structures, but is not necessarily a prerequisite for the occurrence of mesoscale, microemulsion-like structuring in ternary surfactant-free microemulsions (SFME) and consequently, hydrogen-bonding-free microemulsions (HBFME) exist. The evaluated ternary systems were investigated by means of dynamic light scattering (DLS) and computer-based calculation methods. Theoretical COSMO-RS based calculations were applied to provide an explanation for different hydrotropic efficiencies, and COSMOplex calculations were used to predict and evaluate the propensity of the molecules to form mesoscale structures in SFME and HBFME. Microemulsion-like fluctuations could be observed in the COSMOplex simulations and correlate fairly well with the appearance of mesoscopic structures observed in SFME and HBFME, although the free energy differences in the formation of aggregate structures in the investigated systems are very small, in the range of 0.05 kcal mol-1.

4.
Phys Chem Chem Phys ; 20(13): 8812-8821, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29542791

ABSTRACT

Aqueous solutions of five lanthanide salts: LaCl3, La(NO3)3, La2(SO4)3, Eu(NO3)3 and Eu2(SO4)3 have been studied at 25 °C by dielectric relaxation spectroscopy over the frequency range 0.05 ≤ ν/GHz ≤ 89. Detailed analysis of the solvent-related modes located at higher frequencies showed that both La3+ and Eu3+ are strongly hydrated, even including partial formation of a third hydration shell similar to that of Al3+(aq). Up to two solute-related modes could be detected at lower frequencies, due to the formation of various types of 1 : 1 ion pairs (IPs). All five salts showed modest levels of association in the order Cl- < NO3- ≪ SO42-, mostly in the form of double-solvent-separated IPs with small amounts of solvent-shared IPs. Overall association constants, , calculated from the stepwise IP formation constants were consistent with literature values.

5.
J Colloid Interface Sci ; 516: 466-475, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29408136

ABSTRACT

In the present contribution, we investigated the influence of the structuring of surfactant-free microemulsions (SFME) (water/1-propanol/limonene and water/tert-butanol/limonene) on the enzyme activity of horseradish peroxidase (HRP). To this purpose, the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) with hydrogen peroxide was chosen as a model reaction. Enzymatic activities in SFMEs of varying compositions were investigated by UV-Vis spectroscopy and compared to the enzyme activity in pure buffer solution. Dynamic light, small-angle-X-ray scattering and conductivity measurements were performed in order to obtain structural information on the used SFMEs. Findings presented in this study revealed that the ability of short-chain alcohols to form mesostructures (aqueous aggregates in oil) has a crucial effect on the enzyme activity in SFMEs. Mesoscale structuring with 1-propanol (NPA) was found to be more pronounced than for the more hydrophobic tert-butanol (TBA). It was concluded that the most pronounced mesoscale-structured SFMEs lead to the highest enzymatic activities.


Subject(s)
Horseradish Peroxidase/chemistry , 1-Propanol/chemistry , Benzothiazoles/chemistry , Emulsions , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Kinetics , Limonene/chemistry , Oxidation-Reduction , Particle Size , Sulfonic Acids/chemistry , Surface Properties , Surface-Active Agents/chemistry , Water/chemistry , tert-Butyl Alcohol/chemistry
6.
Phys Chem Chem Phys ; 19(35): 23773-23780, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28665425

ABSTRACT

In this contribution, we (i) link the mesoscopic structuring of the binary structured solvent mixture H2O/tert-butanol (TBA) to the kinetics and the efficacy of the oxidation of benzyl alcohol (BA) to the corresponding aldehyde catalyzed by H5PMo10V2O40. We also compare the catalytic efficacy of this reaction in the mesoscopically structured solvent H2O/TBA to an unstructured (or very weakly structured) solvent H2O/ethanol (EtOH). In this context, we (ii) also give a methodological outline on how to study systematically the catalytic efficacy of chemical reactions as a function of the mesoscale structuring of a binary solvent. We demonstrate that the obtained yields of benzyl aldehyde depend on the type of mesoscopic structuring of the binary solvent H2O/TBA. An elevated catalytic performance of at least 100% is found for unstructured binary mixtures H2O/TBA compared to compartmented binary mixtures H2O/TBA. We conclude that compartmentation of both the organic substrate and the catalyst in TBA and water-rich micro phases seems to be unfavorable for the catalytic efficacy.

7.
Phys Chem Chem Phys ; 19(3): 1806-1816, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27929158

ABSTRACT

In the present contribution, the pre-structuring of binary mixtures of hydrotropes and H2O is linked to the solubilisation of poorly water miscible compounds. We have chosen a series of short-chain alcohols as hydrotropes and benzyl alcohol, limonene and a hydrophobic azo-dye (Disperse Red 13) as organic compounds to be dissolved. A very weak pre-structuring is found for ethanol/H2O and 2-propanol/H2O mixtures. Pre-structuring is most developed for binary 1-propanol/H2O and tert-butanol/H2O mixtures and supports the bicontinuity model of alcohol-rich and water-rich domains as already postulated by Anisimov et al. Such a pre-structuring leads to a high solubilisation power for poorly water miscible components (limonene and Disperse Red, characterized by high octanol/water partition coefficients, log(P) values of 4.5 and 4.85), whereas a very weak pre-structuring leads to a high solubilisation power for slightly water miscible components (benzyl alcohol). This difference in solubilisation power can be linked to (i) the formation of mesoscale structures in the cases of ethanol and 2-propanol and (ii) the extension of pre-structures in the cases of 1-propanol and tert-butanol. Three different solubilisation mechanisms could be identified: bulk solubilisation, interface solubilisation and a combination of both. These supramolecular structures in binary and ternary systems were investigated by small-and-wide-angle X-ray and neutron scattering, dynamic light scattering and conductivity measurements (in the presence of small amounts of salt).

8.
Anal Bioanal Chem ; 408(30): 8681-8689, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27866256

ABSTRACT

Microemulsion electrokinetic chromatography (MEEKC) is a powerful tool to separate neutral species based on differences in their hydrophobic and hydrophilic properties. However, as a major drawback the conventionally used SDS based microemulsions are not compatible with electrospray ionization mass spectrometry (ESI-MS). In this work, a surfactant-free microemulsion (SFME) consisting of water, ethanol, and 1-octanol is used for surfactant-free microemulsion electrokinetic chromatography (SF-MEEKC). Ammonium acetate was added to the SFME enabling electrophoretic separations. The stability of SFMEs containing ammonium acetate was investigated using small-angle X-ray scattering and dynamic light scattering. A method for the separation of a model system of hydrophobic and hydrophilic neutral vitamins, namely the vitamins B2 and D3, and the cationic vitamin B1 was developed using UV/VIS detection. The influence of the ammonium acetate concentration on the separation performance was studied in detail. The method was characterized concerning reproducibility of migration times and peak areas and concerning the linearity of the calibration data. Furthermore, SF-MEEKC was coupled to ESI-MS investigating the compatibility between SFMEs and the ESI process. The signal intensities of ESI-MS measurements of the model analytes were comparable for SFMEs and aqueous systems. Finally, the vitamin D3 content of a drug treating vitamin D3 deficiency was determined by SF-MEEKC coupled to ESI-MS using 25-hydroxycholecalciferol as an internal standard. Graphical abstract The concept of surfactant-free microemulsion electrokinetic chromatography coupled to electrospray ionization mass spectrometry.


Subject(s)
Cholecalciferol/isolation & purification , Chromatography, Micellar Electrokinetic Capillary/methods , Riboflavin/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Thiamine/isolation & purification , 1-Octanol/chemistry , Acetates/isolation & purification , Calcifediol , Dynamic Light Scattering , Emulsions , Ethanol/chemistry , Hydrophobic and Hydrophilic Interactions , Reference Standards , Reproducibility of Results , Scattering, Small Angle , Solutions/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...