Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(8): 5999-6026, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38580317

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step in NAD+ biosynthesis via salvage of NAM formed from catabolism of NAD+ by proteins with NADase activity (e.g., PARPs, SIRTs, CD38). Depletion of NAD+ in aging, neurodegeneration, and metabolic disorders is addressed by NAD+ supplementation. Conversely, NAMPT inhibitors have been developed for cancer therapy: many discovered by phenotypic screening for cancer cell death have low nanomolar potency in cellular models. No NAMPT inhibitor is yet FDA-approved. The ability of inhibitors to act as NAMPT substrates may be associated with efficacy and toxicity. Some 3-pyridyl inhibitors become 4-pyridyl activators or "NAD+ boosters". NAMPT positive allosteric modulators (N-PAMs) and boosters may increase enzyme activity by relieving substrate/product inhibition. Binding to a "rear channel" extending from the NAMPT active site is key for inhibitors, boosters, and N-PAMs. A deeper understanding may fulfill the potential of NAMPT ligands to regulate cellular life and death.


Subject(s)
Enzyme Inhibitors , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/metabolism , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Animals , Neoplasms/drug therapy , NAD/metabolism , Allosteric Regulation/drug effects , Cell Death/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cytokines/metabolism
2.
J Med Chem ; 66(24): 16704-16727, 2023 12 28.
Article in English | MEDLINE | ID: mdl-38096366

ABSTRACT

Depletion of nicotinamide adenine dinucleotide (NAD+) is associated with aging and disease, spurring the study of dietary supplements to replenish NAD+. The catabolism of NAD+ to nicotinamide (NAM) requires the salvage of NAM to replenish cellular NAD+, which relies on the rate-limiting enzyme nicotinamide phosphoribosyltransferase (NAMPT). Pharmacological activation of NAMPT provides an alternative to dietary supplements. Screening for activators of NAMPT identified small molecule NAMPT positive allosteric modulators (N-PAMs). N-PAMs bind to the rear channel of NAMPT increasing enzyme activity and alleviating feedback inhibition by NAM and NAD+. Synthesis of over 70 N-PAMs provided an excellent correlation between rear channel binding affinity and potency for enzyme activation, confirming the mechanism of allosteric activation via binding to the rear channel. The mechanism accounts for higher binding affinity leading to loss of efficacy. Enzyme activation translated directly to elevation of NAD+ measured in cells. Optimization led to an orally bioavailable N-PAM.


Subject(s)
NAD , Nicotinamide Phosphoribosyltransferase , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , NAD/metabolism , Niacinamide/pharmacology , Cell Line, Tumor , Cytokines/metabolism , Structure-Activity Relationship
3.
Biochemistry ; 62(4): 923-933, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36746631

ABSTRACT

In aging and disease, cellular nicotinamide adenine dinucleotide (NAD+) is depleted by catabolism to nicotinamide (NAM). NAD+ supplementation is being pursued to enhance human healthspan and lifespan. Activation of nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting step in NAD+ biosynthesis, has the potential to increase the salvage of NAM. Novel NAMPT-positive allosteric modulators (N-PAMs) were discovered in addition to the demonstration of NAMPT activation by biogenic phenols. The mechanism of activation was revealed through the synthesis of novel chemical probes, new NAMPT co-crystal structures, and enzyme kinetics. Binding to a rear channel in NAMPT regulates NAM binding and turnover, with biochemical observations being replicated by NAD+ measurements in human cells. The mechanism of action of N-PAMs identifies, for the first time, the role of the rear channel in the regulation of NAMPT turnover coupled to productive and nonproductive NAM binding. The tight regulation of cellular NAMPT via feedback inhibition by NAM, NAD+, and adenosine 5'-triphosphate (ATP) is differentially regulated by N-PAMs and other activators, indicating that different classes of pharmacological activators may be engineered to restore or enhance NAD+ levels in affected tissues.


Subject(s)
NAD , Nicotinamide Phosphoribosyltransferase , Humans , Cytokines/metabolism , Longevity , NAD/metabolism , Niacinamide/pharmacology , Niacinamide/metabolism , Nicotinamide Phosphoribosyltransferase/chemistry , Nicotinamide Phosphoribosyltransferase/metabolism , Allosteric Site
SELECTION OF CITATIONS
SEARCH DETAIL
...